Overview of Protein Phosphorylation

Bartholomew M. Sefton1, Shirish Shenolikar2

1 The Salk Institute, San Diego, California, 2 Duke University Medical Center, Durham, North Carolina
Publication Name:  Current Protocols in Molecular Biology
Unit Number:  Unit 18.1
DOI:  10.1002/0471142727.mb1801s33
Online Posting Date:  May, 2001
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

This overview discusses the significance and roles of protein phosphorylation in regulation of protein function. Sites of phosphorylation are described as well as methods for detecting both radiolabeled and unlabeled phosphoamino acids. Importantly, protein kinases and phosphatases, the regulators of phosphorylation are discussed.

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • History
  • Labeling Studies
  • Sites of Phosphorylation
  • Detection of Unlabeled Phosphoamino Acids
  • Protein Kinases
  • Protein Phosphatases
  • Literature Cited
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Alberola‐Ila, J., Forbush, K.A., Seger, R., Krebs, E.G., and Perlmutter, R.M. 1995. Selective requirement for MAP kinase activation in thymocyte differentiation. Nature 373:620‐623.
   Brunet, A., Pages, G., and Poussegur, J. 1994. Constitutively active mutants of MAP (MEK1) induce growth factor‐relaxation and oncogenicity when expressed in fibroblasts. Oncogene 9:3379‐3387.
   Charbonneau, H. and Tonks, N.K. 1992. 1002 protein phosphatases? Annu. Rev. Cell Biol. 8:463‐493.
   Cohen, P. 1985. The role of protein phosphorylation in the hormonal control of enzyme activity. Eur. J. Biochem. 15:439‐448.
   Cohen, P. 1989. The structure and regulation of protein phosphatases. Annu. Rev. Biochem. 58:453‐508.
   Cohen, P. 1991. Classification of protein serine/threonine phosphatases: Identification and quantitation in cell extracts. Methods Enzymol. 201:389‐398.
   Cori, G.T. and Cori, C.F. 1945. Enzymatic conversion of phosphorylase a to b. J. Biol. Chem. 158:321‐345.
   Crews, C.M. and Erickson, R.L. 1992. Purification of a murine protein‐tyrosine/threonine kinase that phosphorylates and activates the erk‐1 gene product: Relationship to the fission yeast byr1 gene product. Proc. Natl. Acad. Sci. U.S.A. 89:8205‐8209.
   Czernik, A.J., Girault, J.A., Nairn, A.C., Chen, J., Snyder, G., Kebabian, J., and Greengard, P. 1991. Production of phosphorylation state–specific antibodies. Methods Enzymol. 201:264‐283.
   Doree, M. and Galas, S. 1994. The cyclin‐dependent protein kinases and the control of cell division. FASEB J. 85:1114‐1121.
   Duclos, B., Marcandier, S., and Cozzone, A.J. 1991. Chemical properties and separation of phosphoamino acids by thin‐layer chromatography and/or electrophoresis. Methods Enzymol. 201:10‐21.
   Eisenmann, D.M. and Kim, S.K. 1994. Signal transduction and cell fate specification during Caenorhabditis elegans vulval development. Curr. Opin. Genet. Dev. 4:508‐516.
   Hardie, D.G., Haystead, T.A.J., and Sim, A.T.R. 1991. Use of okadaic acid to inhibit protein phosphatases in intact cells. Methods Enzymol. 201:469‐477.
   Heldin, C.‐H. 1995. Dimerization of cell surface receptors in signal transduction. Cell 80:213‐223.
   Ihle, J.N., Witthuhn, B.A., Quelle, F.W., Yamamoto, K., Thierfelder, W.E., Kreider, B., and Silvennoinen, O. 1994. Signalling by the cytokine receptor superfamily: JAKS and STATS. Trends Biochem. Sci. 19:222‐227.
   Kamps, M.P. 1991. Determination of phosphoamino acid composition by acid hydrolysis of protein blotted to Immobilon. Methods Enzymol. 201:21‐27.
   Marshall, C.J. 1995. Specificity of receptor tyrosine kinase signalling: Transient versus sustained extracellular signal‐regulated kinase activation. Cell 80:179‐185.
   Parker, L.L., Atherton‐Fessler, S., and Piwinica‐Worms, H. 1992. p107 wee1 is a dual‐specificity kinase that phosphorylates p34cdc2 on tyrosine 15. Proc. Natl. Acad. Sci. U.S.A. 89:2917‐2921.
   Planas‐Silva, M.D. and Means, A.R. 1992. Expression of a constitutive form of calcium/calmodulin‐dependent protein kinase II leads to arrest of the cell cycle in G2. EMBO J. 11:507‐517.
   Ringer, D.P. 1991. Separation of phosphotyrosine, phosphoserine, and phosphothreonine by high‐performance liquid chromatography. Methods Enzymol. 201:3‐10.
   Shenolikar, S. 1994. Protein serine/threonine phosphatases: New avenues for cell regulation. Annu. Rev. Cell Biol. 10:55‐86.
   Shenolikar, S. and Ingebritsen, T.S. 1984. Protein (serine, threonine) phosphate phosphatases. Methods Enzymol. 107:102‐130.
   Shenolikar, S. and Nairn, A.C. 1991. Protein phosphatases: Recent progress. Adv. Second Messenger Phosphoprotein Res. 23:1‐121.
   Simon, M. 1994. Signal transduction during the development of the Drosophila R7 photoreceptor. Dev. Biol. 166:431‐442.
   Spencer, D.M., Wandless, T.J., Schreiber, S.L., and Crabtree, G.R. 1993. Controlling signal transduction with synthetic ligands. Science 262:1019‐1024.
   Sun, H., Charles, C.H., Lau, L.F., and Tonks, N.K. 1993. MKP‐1 (3CH134), an immediate early gene product, is a dual‐specificity phosphatase that dephosphorylates MAP kinase in vivo. Cell 75:487‐493.
   Thorburn, J., McMahon, M. and Thorburn, A. 1994. Raf‐1 kinase activity is necessary and sufficient for gene expression changes but not sufficient for cellular morphology changes associated with cardiac myocyte hypertrophy. J. Biol. Chem. 269:30580‐30586.
   Zhou, S., Clemens, J.C., Stone, R.L., and Dixon, J.E. 1994. Mutational analysis of a ser/thr phosphatase. Identification of residues important in phosphatase substrate binding and catalysis. J. Biol. Chem. 269:26234‐26238.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library