Resources for Small Regulatory RNAs

George W. Bell1, Fran Lewitter1

1 Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
Publication Name:  Current Protocols in Molecular Biology
Unit Number:  Unit 19.8
DOI:  10.1002/0471142727.mb1908s107
Online Posting Date:  July, 2014
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Over the past twenty years, new classes of regulatory RNAs have been discovered, previously hidden in the transcriptome mostly due to their small size. These small regulatory RNAs include small interfering RNAs (siRNAs), microRNAs (miRNAs), and Piwi‐interacting RNAs (piRNAs). Numerous databases have been developed to store information about these small regulatory RNAs, and many tools have been developed to work with the data. This overview introduces the reader to the many resources available for working with small regulatory RNAs. Curr. Protoc. Mol. Biol. 107:19.8.1‐19.8.14. © 2014 by John Wiley & Sons, Inc.

Keywords: miRNA; piRNA; siRNA; regulatory RNAs

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Exogenous Small RNAs: siRNAs and shRNAs
  • MicroRNA Genes
  • Piwi‐Interacting RNAs
  • General Resources that Include Small Regulatory RNAs
  • Concluding Remarks
  • Acknowledgements
  • LITERATURE CITED
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

LITERATURE CITED
  Affymetrix/Cold Spring Harbor Laboratory ENCODE Transcriptome Project. 2009. Post‐transcriptional processing generates a diversity of 5′‐modified long and short RNAs. Nature 457:1028‐1032.
  Ambros, V., Bartel, B., Bartel, D.P., Burge, C.B., Carrington, J.C., Chen, X., Dreyfuss, G., Eddy, S.R., Griffiths‐Jones, S., Marshall, M., Matzke, M., Ruvkun, G., and Tuschl, T. 2003. A uniform system for microRNA annotation. RNA 9:277‐279.
  Aravin, A., Gaidatzis, D., Pfeffer, S., Lagos‐Quintana, M., Landgraf, P., Iovino, N., Morris, P., Brownstein, M.J., Kuramochi‐Miyagawa, S., Nakano, T., Chien, M., Russo, J.J., Ju, J., Sheridan, R., Sander, C., Zavolan, M., and Tuschl, T. 2006. A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442:203‐207.
  Armisen, J., Gilchrist, M.J., Wilczynska, A., Standart, N., and Miska, E.A. 2009. Abundant and dynamically expressed miRNAs, piRNAs, and other small RNAs in the vertebrate Xenopus tropicalis. Genome Res. 19:1766‐1775.
  Ashe, A., Sapetschnig, A., Weick, E.‐M., Mitchell, J., Bagijn, M.P., Cording, A.C., Doebley, A.‐L., Goldstein, L.D., Lehrbach, N.J., Le Pen, J., Pintacuda, G., Sakaguchi, A., Sarkies, P., Ahmed, S., and Miska, E.A. 2012. piRNAs can trigger a multigenerational epigenetic memory in the germline of C. elegans. Cell 150:88‐99.
  Bagijn, M.P., Goldstein, L.D., Sapetschnig, A., Weick, E.‐M., Bouasker, S., Lehrbach, N.J., Simard, M.J., and Miska, E.A. 2012. Function, targets, and evolution of Caenorhabditis elegans piRNAs. Science 337:574‐578.
  Barrett, T., Troup, D.B., Wilhite, S.E., Ledoux, P., Rudnev, D., Evangelista, C., Kim, I.F., Soboleva, A., Tomashevsky, M., Marshall, K.A., Phillippy, K.H., Sherman, P.M., Muertter, R.N., and Edgar, R. 2009. NCBI GEO: Archive for high‐throughput functional genomic data. Nucleic Acids Res. 37:D885‐D890.
  Bartel, D.P. 2004. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 116:281‐297.
  Bartel, D. P. 2009. MicroRNAs: Target recognition and regulatory functions. Cell 136:215‐233.
  Betel, D., Koppal, A., Agius, P., Sander, C., and Leslie, C. 2010. Comprehensive modeling of microRNA targets predicts functional non‐conserved and non‐canonical sites. Genome Biol. 11:R90.
  Betel, D., Sheridan, R., Marks, D.S., and Sander, C. 2007. Computational analysis of mouse piRNA sequence and biogenesis. PLoS Comput. Biol. 3:e222.
  Birmingham, A., Anderson, E., Sullivan, K., Reynolds, A., Boese, Q., Leake, D., Karpilow, J., and Khvorova, A. 2007. A protocol for designing siRNAs with high functionality and specificity. Nat. Protoc. 2:2068‐2078.
  Boudreau, R.L., Spengler, R.M., Hylock, R.H., Kusenda, B.J., Davis, H.A., Eichmann, D.A., and Davidson, B.L. 2013. siSPOTR: A tool for designing highly specific and potent siRNAs for human and mouse. Nucleic Acids Res. 41:e9.
  Brennecke, J., Aravin, A. A., Stark, A., Dus, M., Kellis, M., Sachidanandam, R., and Hannon, G.J. 2007. Discrete small RNA‐generating loci as master regulators of transposon activity in Drosophila. Cell 128:1089‐1103.
  Brummelkamp, T.R., Bernards, R., and Agami, R. 2002. A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550‐553.
  Burge, S.W., Daub, J., Eberhardt, R., Tate, J., Barquist, L., Nawrocki, E.P., Eddy, S.R., Gardner, P.P., and Bateman, A. 2013. Rfam 11.0: 10 years of RNA families. Nucleic Acids Res. 41:D226‐D232.
  Chan, P.P. and Lowe, T.M. 2009. GtRNAdb: A database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res. 37:D93‐D97.
  Dai, X. and Zhao, P.X. 2008. pssRNAMiner: A plant short small RNA regulatory cascade analysis server. Nucleic Acids Res. 36:W114‐W118.
  Ding, Y., Chan, C.Y., and Lawrence, C.E. 2004. Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Res. 32:W135‐W141.
  Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. 2001a. Duplexes of 21‐nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494‐498.
  Elbashir, S.M., Lendeckel, W., and Tuschl, T. 2001b. RNA interference is mediated by 21‐ and 22‐nucleotide RNAs. Genes Dev. 15:188‐200.
  Eyre, T.A., Ducluzeau, F., Sneddon, T.P., Povey, S., Bruford, E.A., and Lush, M.J. 2006. The HUGO Gene Nomenclature Database, 2006 updates. Nucleic Acids Res. 34:D319‐D321.
  Flicek, P., Ahmed, I., Amode, M.R., Barrell, D., Beal, K., Brent, S., Carvalho‐Silva, D., Clapham, P., Coates, G., Fairley, S., Fitzgerald, S., Gil, L., García‐Girón, C., Gordon, L., Hourlier, T., Hunt, S., Juettemann, T., Kähäri, A.K., Keenan, S., Komorowska, M., Kulesha, E., Longden, I., Maurel, T., McLaren, W.M., Muffato, M., Nag, R., Overduin, B., Pignatelli, M., Pritchard, B., Pritchard, E., Riat, H.S., Ritchie G.R., Ruffier, M., Schuster, M., Sheppard, D., Sobral, D., Taylor, K., Thormann, A., Trevanion, S., White, S., Wilder, S.P., Aken, B.L., Birney, E., Cunningham, F., Dunham, I., Harrow, J., Herrero, J., Hubbard, T.J., Johnson, N., Kinsella, R., Parker, A., Spudich, G., Yates, A., Zadissa, A., and Searle S.M. 2013. Ensembl 2013. Nucleic Acids Res. 41:D48‐D55.
  Friedman, R.C., Farh, K.K., Burge, C.B., and Bartel, D.P. 2009. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19:92‐105.
  Gaidatzis, D., van Nimwegen, E., Hausser, J., and Zavolan, M. 2007. Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinform. 8:69.
  Garcia, D.M., Baek, D., Shin, C., Bell, G.W., Grimson, A., and Bartel, D.P. 2011. Weak seed‐pairing stability and high target‐site abundance decrease the proficiency of lsy‐6 and other microRNAs. Nat. Struct. Mol. Biol. 18:1139‐1146.
  Gardner, P.P., Daub, J., Tate, J.G., Nawrocki, E.P., Kolbe, D.L., Lindgreen, S., Wilkinson, A.C., Finn, R.D., Griffiths‐Jones, S., Eddy, S.R., and Bateman, A. 2009. Rfam: Updates to the RNA families database. Nucleic Acids Res. 37:D136‐D140.
  Glazov, E.A., Cottee, P.A., Barris, W.C., Moore, R.J., Dalrymple, B.P., and Tizard, M.L. 2008. A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. Genome Res. 18:957‐964.
  Griffiths‐Jones, S., Grocock, R.J., van Dongen, S., Bateman, A., and Enright, A.J. 2006. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34:D140‐D144.
  Griffiths‐Jones, S., Saini, H.K., van Dongen, S., and Enright, A.J. 2008. miRBase: Tools for microRNA genomics. Nucleic Acids Res. 36:D154‐D158.
  Grimson, A., Srivastava, M., Fahey, B., Woodcroft, B.J., Chiang, H.R., King, N., Degnan, B.M., Rokhsar, D.S., and Bartel, D.P. 2008. Early origins and evolution of microRNAs and Piwi‐interacting RNAs in animals. Nature 455:1193‐1197.
  Gruber, A.R., Lorenz, R., Bernhart, S.H., Neubock, R., and Hofacker, I.L. 2008. The Vienna RNA websuite. Nucleic Acids Res. 36:W70‐W74.
  Hammell, M., Long, D., Zhang, L., Lee, A., Carmack, C.S., Han, M., Ding, Y., and Ambros, V. 2008. mirWIP: microRNA target prediction based on microRNA‐containing ribonucleoprotein‐enriched transcripts. Nat. Methods 5:813‐819.
  Harrow, J., Frankish, A., Gonzalez, J.M., Tapanari, E., Diekhans, M., Kokocinski, F., Aken, B.L., Barrell, D., Zadissa, A., Searle, S., Barnes, I., Bignell, A., Boychenko, V., Hunt, T., Kay, M., Mukherjee, G., Rajan, J., Despacio‐Reyes, G., Saunders, G., Steward, C., Harte, R., Lin, M., Howald, C., Tanzer, A., Derrien, T., Chrast, J., Walters, N., Balasubramanian, S., Pei, B., Tress, M., Rodriguez, J.M., Ezkurdia, I., van Baren, J., Brent, M., Haussler, D., Kellis, M., Valencia, A., Reymond, A., Gerstein, M., Guigó, R., and Hubbard, T.J. 2012. GENCODE: The reference human genome annotation for The ENCODE Project. Genome Res. 22:1760‐1774.
  Hsu, S.D., Lin, F.M., Wu, W.Y., Liang, C., Huang, W.C., Chan, W.L., Tsai, W.T., Chen, G.Z., Lee, C.J., Chiu, C.M., Chien, C.H., Wu, M.C., Huang, C.Y., Tsou, A.P., and Huang, H.D.2011. miRTarBase: A database curates experimentally validated microRNA‐target interactions. Nucleic Acids Res. 39:D163‐D169.
  Ishizu, H., Siomi, H., and Siomi, M. C. 2012. Biology of PIWI‐interacting RNAs: New insights into biogenesis and function inside and outside of germlines. Genes Dev. 26:2361‐2373.
  Jiang, Q., Wang, Y., Hao, Y., Juan, L., Teng, M., Zhang, X., Li, M., Wang, G., and Liu, Y. 2009. miR2Disease: A manually curated database for microRNA deregulation in human disease. Nucleic Acids Res. 37:D98‐D104.
  Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U., and Segal, E. 2007. The role of site accessibility in microRNA target recognition. Nat. Genet. 39:1278‐1284.
  Kim, V.N. 2006. Small RNAs just got bigger: Piwi‐interacting RNAs (piRNAs) in mammalian testes. Genes Dev. 20:1993‐1997.
  Kim, V.N., Han, J., and Siomi, M.C. 2009. Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 10:126‐139.
  Klattenhoff, C. and Theurkauf, W. 2008. Biogenesis and germline functions of piRNAs. Development 135:3‐9.
  Kong, W., Zhao, J.J., He, L., and Cheng, J.Q. 2009. Strategies for profiling microRNA expression. J. Cell Physiol. 218:22‐25.
  Kozomara, A. and Griffiths‐Jones, S. 2011. miRBase: Integrating microRNA annotation and deep‐sequencing data. Nucleic Acids Res. 39:D152‐D157.
  Lall, S., Grun, D., Krek, A., Chen, K., Wang, Y.L., Dewey, C.N., Sood, P., Colombo, T., Bray, N., Macmenamin, P., Kao, H.L., Gunsalus, K.C., Pachter, L., Piano, F., and Rajewsky, N. 2006. A genome‐wide map of conserved microRNA targets in C. elegans. Curr. Biol. 16:460‐471.
  Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. 2009. Ultrafast and memory‐efficient alignment of short DNA sequences to the human genome. Genome Biol. 10:R25.
  Li, H. and Durbin, R. 2009. Fast and accurate short read alignment with Burrows‐Wheeler transform. Bioinformatics 25:1754‐1760.
  Lu, Z.J. and Mathews, D.H. 2008. OligoWalk: An online siRNA design tool utilizing hybridization thermodynamics. Nucleic Acids Res. 36:W104‐W108.
  Markham, N.R. and Zuker, M. 2008. UNAFold: Software for nucleic acid folding and hybridization. Methods Mol. Biol. 453:3‐31.
  Martinez, J., Patkaniowska, A., Elbashir, S. M., Harborth, J., Hossbach, M., Urlaub, H., Meyer, J., Weber, K., Vandenburgh, K., Manninga, H., Scaringe, S.A., Luehrmann, R., and Tuschl, T. 2003. Analysis of mammalian gene function using small interfering RNAs. Nucleic Acids Res. Suppl. 333.
  Matera, A.G., Terns, R.M., and Terns, M.P. 2007. Non‐coding RNAs: Lessons from the small nuclear and small nucleolar RNAs. Nat. Rev. Mol. Cell Biol. 8:209‐220.
  Meyer, L.R., Zweig, A.S., Hinrichs, A.S., Karolchik, D., Kuhn, R.M., Wong, M., Sloan, C.A., Rosenbloom, K.R., Roe, G., Rhead, B., Raney, B.J., Pohl, A., Malladi, V.S., Li, C.H., Lee, B.T., Learned, K., Kirkup, V., Hsu, F., Heitner, S., Harte, R.A., Haeussler, M., Guruvadoo, L., Goldman, M., Giardine, B.M., Fujita, P.A., Dreszer, T.R., Diekhans, M., Cline, M.S., Clawson, H., Barber, G.P., Haussler, D., and Kent, W.J. 2013. The UCSC Genome Browser database: Extensions and updates 2013. Nucleic Acids Res. 41:D64‐D69.
  Miranda, K.C., Huynh, T., Tay, Y., Ang, Y.S., Tam, W.L., Thomson, A.M., Lim, B., and Rigoutsos, I. 2006. A pattern‐based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126:1203‐1217.
  Morin, R.D., O'Connor, M.D., Griffith, M., Kuchenbauer, F., Delaney, A., Prabhu, A.L., Zhao, Y., McDonald, H., Zeng, T., Hirst, M., Eaves, C.J., and Marra, M.A. 2008. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res. 18:610‐621.
  Naito, Y. and Ui‐Tei, K. 2013. Designing functional siRNA with reduced off‐target effects. Methods Mol. Biol. 942:57‐68.
  Naito, Y., Yoshimura, J., Morishita, S., and Ui‐Tei, K. 2009. siDirect 2.0: Updated software for designing functional siRNA with reduced seed‐dependent off‐target effect. BMC Bioinform. 10:392.
  NCBI Resource Coordinators, 60 Collaborators. 2013. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 41:D8‐D20.
  Okamura, K. and Lai, E.C. 2008. Endogenous small interfering RNAs in animals. Nat. Rev. Mol. Cell Biol. 9:673‐678.
  Ozsolak, F., Poling, L.L., Wang, Z., Liu, H., Liu, X.S., Roeder, R.G., Zhang, X., Song, J.S., and Fisher, D.E. 2008. Chromatin structure analyses identify miRNA promoters. Genes Dev. 22:3172‐3183.
  Papadopoulos, G.L., Reczko, M., Simossis, V.A., Sethupathy, P., and Hatzigeorgiou, A.G. 2009. The database of experimentally supported targets: A functional update of TarBase. Nucleic Acids Res. 37:D155‐D158.
  Paraskevopoulou, M.D., Georgakilas, G., Kostoulas, N., Vlachos, I. S., Vergoulis, T., Reczko, M., Filippidis, C., Dalamagas, T., and Hatzigeorgiou, A.G. 2013. DIANA‐microT web server v5.0: Service integration into miRNA functional analysis workflows. Nucleic Acids Res. 41:W169‐W173.
  Parkinson, H., Kapushesky, M., Kolesnikov, N., Rustici, G., Shojatalab, M., Abeygunawardena, N., Berube, H., Dylag, M., Emam, I., Farne, A., Holloway, E., Lukk, M., Malone, J., Mani, R., Pilicheva, E., Rayner, T.F., Rezwan, F., Sharma, A., Williams, E., Bradley, X.Z., Adamusiak, T., Brandizi, M., Burdett, T., Coulson, R., Krestyaninova, M., Kurnosov, P., Maguire, E., Neogi, S.G., Rocca‐Serra, P., Sansone, S.A., Sklyar, N., Zhao, M., Sarkans, U., and Brazma, A. 2009. ArrayExpress update—from an archive of functional genomics experiments to the atlas of gene expression. Nucleic Acids Res. 37:D868–D872.
  Payer, B. and Lee, J.T. 2008. X chromosome dosage compensation: How mammals keep the balance. Annu. Rev. Genet. 42:733‐772.
  Pedersen, J.S., Bejerano, G., Siepel, A., Rosenbloom, K., Lindblad‐Toh, K., Lander, E.S., Kent, J., Miller, W., and Haussler, D. 2006. Identification and classification of conserved RNA secondary structures in the human genome. PLoS Comput. Biol. 2:e33.
  Rajasethupathy, P., Antonov, I., Sheridan, R., Frey, S., Sander, C., Tuschl, T., and Kandel, E.R. 2012. A role for neuronal piRNAs in the epigenetic control of memory‐related synaptic plasticity. Cell 149:693‐707.
  Rhoades, M.W., Reinhart, B.J., Lim, L.P., Burge, C.B., Bartel, B., and Bartel, D.P. 2002. Prediction of plant microRNA targets. Cell 110:513‐520.
  Rosenkranz, D. and Zischler, H. 2012. proTRAC—a software for probabilistic piRNA cluster detection, visualization and analysis. BMC Bioinform. 13:5.
  Sai Lakshmi, S. and Agrawal, S. 2008. piRNABank: A web resource on classified and clustered Piwi‐interacting RNAs. Nucleic Acids Res. 36:D173‐D177.
  Shendure, J. and Ji, H. 2008. Next‐generation DNA sequencing. Nat. Biotechnol. 26:1135‐1145.
  Siomi, M.C., Sato, K., Pezic, D., and Aravin, A.A. 2011. PIWI‐interacting small RNAs: The vanguard of genome defence. Nat. Rev. Mol. Cell Biol. 12:246‐258.
  Stark, A., Brennecke, J., Bushati, N., Russell, R.B., and Cohen, S.M. 2005. Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell 123:1133‐1146.
  Thomson, T. and Lin, H. 2009. The biogenesis and function of PIWI proteins and piRNAs: progress and prospect. Annu. Rev. Cell Dev. Biol. 25:355‐376.
  Vazquez, F., Vaucheret, H., Rajagopalan, R., Lepers, C., Gasciolli, V., Mallory, A.C., Hilbert, J.L., Bartel, D.P., and Crete, P. 2004. Endogenous trans‐acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol. Cell 16:69‐79.
  Wang, Z., Gerstein, M., and Snyder, M. 2009. RNA‐Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genetics 10:57‐63.
  Yin, J.Q., Zhao, R.C., and Morris, K.V 2008. Profiling microRNA expression with microarrays. Trends Biotechnol. 26:70‐76.
  Zuker, M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31:3406‐3415.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library