Surface Plasmon Resonance for Measurements of Biological Interest

Cynthia Bamdad1

1 Clinical Micro Sensors, Pasadena, California
Publication Name:  Current Protocols in Molecular Biology
Unit Number:  Unit 20.4
DOI:  10.1002/0471142727.mb2004s40
Online Posting Date:  May, 2001
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Genetic manipulations, including gene knock‐outs and mutant screens, provide an initial hint as to the function of a gene product and indicate possible associated factors. To unravel complicated biological processes, which control the development of organisms, one must identify the interacting components. An in vitro technique based on an optical phenomenon, called surface plasmon resonance (SPR), can simultaneously detect interactions between unmodified proteins and directly measure kinetic parameters of the interaction. This technique is gaining popularity, due to the increased availabilty oif user‐friendly machines, and an overview of the technology is presented in this unit.

PDF or HTML at Wiley Online Library

Table of Contents

  • Basic Protocol 1: SPR Using BIAcore Chips
  • Basic Protocol 2: SPR Using NTA‐SAM Chips
  • Commentary
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


Basic Protocol 1: SPR Using BIAcore Chips

  • CM‐5 dextran chips (BIAcore)
  • PBS ( appendix 22)
  • Ligand protein
  • Target protein
  • Amine‐coupling kit (BIAcore), containing:
  • N‐ethyl‐N′‐[(dimethylamino) propyl] carbodiimide hydrochloride (EDC)
  • N‐hydroxysuccinimide (NHS)
  • Sodium acetate buffer, low pH
  • Ethanolamine
  • BIAcore SPR equipment
  • BIA evaluation point‐and‐click software

Basic Protocol 2: SPR Using NTA‐SAM Chips

  • NTA‐SAM chips (3% to 5% NTA relative to an inert ethylene glycol–terminated thiol)
  • PBS or HeBS ( appendix 22)
  • 1 mM NaOH
  • 1% (w/v) Ni(II)SO 4
  • Histidine‐tagged ligand protein
  • Target protein
  • BIAcore SPR equipment
  • BIA evaluation point‐and‐click software
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Bain, C.D., Evall, J., and Whitesides, G.M. 1989. Formation of monolayers by the coadsorption of thiols on gold: Variation in the head group, tail group and solvent. J. Am. Chem. Soc. 111:7155‐7164.
   Bamdad, C. 1997a. Submitted for publication.
   Bamdad, C. 1997b. Submitted for publication.
   Bamdad, C., Sigal, G., Strominger, J., and Whitesides, G. 1994. A mixed monolayer for the immobilization of histidine‐tagged proteins. Appendage: A self‐assembled monolayer for the presentation of oligonucleotides. U.S. patent application PCL01016‐94.
   Barberis, A., Pearlberg, J., Simkovich, N., Farrell, S., Reinagel, P., Bamdad, C., Sigal, G., and Ptashne, M. 1995. Contact with a component of the polymerase II holoenzyme suffices for gene activation. Cell 81:359‐368.
   Bartel, P.L. and Fields, S. 1995. Analyzing protein‐protein interactions using a two‐hybrid system. Methods Enzymol. 254:241‐263.
   Bushnell, D.A., Bamdad, C., and Kornberg, R. 1996. A minimal set of RNA poymerase II transcription protein interactions. J. Biol. Chem. 271:20170‐20174.
   Daniels, P.B., Deacon, J.K., Eddowes, M.J., and Pedley, D.G. 1988. Surface plasmon resonance applied to immunosensing. Sens. Actuators 16:11‐18.
   Farrell, S., Simkovich, N., Wu, Y., Barberis, A. and Ptashne, M. 1996. Gene activation by recruitment of the RNA polymerase II holoenzyme. Genes & Dev. 10:2359‐2367.
   Fisher, R.J. and Fivash, M. 1994. Surface plasmon resonance based methods for measuring the kinetics and binding affinities of biomolecular interactions. Curr. Opin. Biotechnol. 5:389‐395.
   Fisher, R.J., Fivash, M., Casas‐Finet, J., Bladen, S., and Larson McNitt, K. 1994. Real‐time BIAcore measurements of Escherichia coli single‐stranded DNA binding (SSB) protein to polydeoxythymidylic acid reveal single‐state kinetics with steric cooperativity. Methods 6:121‐133.
   Gershon, P.D. and Khilko, S. 1995. Stable chelating linkage for reversible immobilization of oligohistidine tagged proteins in the BIAcore surface plasmon resonance detector. J. Immunol. Methods 183:65‐76.
   Gyuris, J., Golemis, E., Chertkov, H., and Brent, R. 1993. Cdil, a human G1 and S‐phase protein phosphotase that associates with Cdk2. Cell 75:791‐803.
   Johnsson, B., Löfås, S., and Lindquist, G. 1991. Immobilization of proteins to a carboxymethyldextran‐modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors. Anal. Biochem. 198:268‐277.
   Kim, Y.J., Bjorklund, S., Li, Y., Sayre, M.H., and Kornberg, R.D. 1994. A multiprotein mediator of transcriptional activation and its interaction with the C‐terminal repeat domain of RNA polymerase II. Cell 77:599‐608.
   Koleske, A. and Young, R.A. 1994. An RNA polymerase II holoenzyme responsive to ctivators Nature 368:466‐469.
   Kretschmann, E. and Raether, H. 1968. Z. Naturf. 230:2135
   Liedberg, B., Nylander, C., and Lundström, I. 1983. Surface plasmon resonance for gas detection and biosensing. Sens. Actuators 4:299‐304.
   Löfås, S. and Johnsson, B. 1990. A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands. J. Chem. Soc. Chem. Commun. 1526‐1528.
   Myszka, D. 1997. Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors Curr. Opin. Biotechnol. 8:50‐57.
   Nuzzo, R.G., Fusco, F.A., and Allara, D.L. 1987. Spontaneously organized molecular assemblies. 3. Preparation and properties of solution adsorbed monolayers of organic disulfides on gold surfaces. J. Am. Chem. Soc. 109:2358‐2368.
   O'Shannessy, D., Brigham‐Burke, M., Soneson, K., Hensley, P., and Brooks, I. 1993. Determination of rate and equilibrium binding constants for macromolecular interactions using surface plasmon resonance: Use of nonlinear least squares analysis methods. Anal. Biochem. 212:457‐468.
   Otto, A. 1968a. Z. Phys. 216:398.
   Otto, A. 1968b. Phys. Stat. Solidi. 26:199.
   Plant, A., Brigham‐Burke, M., Petrella, E., and O'Shannessy, D. 1995. Phospholipid/alkanethiol bilayers for cell‐surface receptor studies by surface plasmon resonance. Anal. Biochem. 226:342‐348.
   Sigal, G.B., Bamdad, C., Barberis, A., Strominger, J., and Whitesides, G.M. 1996. A self‐assembled monolayer for the binding and study of histidine‐tagged proteins by surface plasmon resonance. Anal. Chem. 68:490‐497.
   Stenberg, E., Persson, B., and Roos, H. 1991. Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins. J. Colloid Interface Sci. 143:513‐526.
   Tanaka, M. 1996. Modulation of promoter occupancy by cooperative DNA binding and activation‐function is a major determinant of transcriptional regulation by activators in vivo. Proc. Natl. Acad. Sci. U.S.A. 93:4311‐4315.
   Turbadar, T. 1959. Proc. Phys. Soc. London 73:40.
   Wahling, G., Raether, H., and Mobius, D. 1979. Studies of organic monolayers on thin silver films using the attenuated total reflection method. Thin Solid Films 58:391‐395.
   Zervos, A., Gyuris, J., and Brent, R. 1993. Mxi1, a protein that specifically interacts with Max to bind Myc‐Max recognition sites. Cell 72:223‐232.
PDF or HTML at Wiley Online Library