DamIP: Using Mutant DNA Adenine Methyltransferase to Study DNA‐Protein Interactions In Vivo

Rui Xiao1, David D. Moore1

1 Baylor College of Medicine, Houston, Texas
Publication Name:  Current Protocols in Molecular Biology
Unit Number:  Unit 21.21
DOI:  10.1002/0471142727.mb2121s94
Online Posting Date:  April, 2011
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

DamIP is a new method for studying DNA‐protein interaction in vivo. A mutant form of DNA adenine methyltransferase (DamK9A) from E. coli is fused to the protein of interest and expressed. The fusion protein will bind to target binding sites and introduce N6‐adenine methylation in nearby sites in the genomic DNA. Methylated DNA fragments are enriched by immunopreciptation with an antibody that recognizes N6‐methyladenine, and can then be used for further analysis, e.g., real‐time PCR, microarray, or high‐throughput sequencing. This method is simple and does not require protein‐DNA crosslinking or a specific antibody to the protein of interest. This unit describes the application of this method for identification of DNA binding sites in vivo. Curr. Protoc. Mol. Biol. 94:21.21.1‐21.21.10. © 2011 by John Wiley & Sons, Inc.

Keywords: DNA adenine methyltransferase; transcription factor binding sites; DamIP; immunoprecipitation; chromatin immunoprecipitation

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Strategic Planning
  • Basic Protocol 1: DamIP for Studying DNA‐Protein Interactions In Vivo
  • Support Protocol 1: Preparation of Sonicated Methylated Genomic DNA for DamIP
  • Support Protocol 2: Antibody Pretreatment for DamIP
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: DamIP for Studying DNA‐Protein Interactions In Vivo

  Materials
  • Sonicated methylated genomic DNA (see protocol 2)
  • TE buffer ( appendix 22)
  • 10× DamIP buffer (see recipe)
  • Pretreated antibodies for m6A and control (see protocol 3)
  • A/G Plus agarose beads (Santa Cruz Biotechnologies, sc‐2003)
  • Digestion buffer (see recipe)
  • Proteinase K, DNase‐free
  • QIAquick PCR purification kit (Qiagen; optional)
  • TE buffer ( appendix 22)
  • 1.7‐ml microcentrifuge tubes
  • Boiling water bath
  • Benchtop centrifuge
  • Additional reagents and equipment for DNA purification (unit 2.1; optional)

Support Protocol 1: Preparation of Sonicated Methylated Genomic DNA for DamIP

  Materials
  • Cells expressing DamK9A fusion protein or control DamK9A only
  • Phosphate‐buffered saline (PBS; appendix 22)
  • Lysis buffer (see recipe)
  • RNase A, DNase‐free
  • Proteinase K, DNase‐free
  • TE buffer ( appendix 22)
  • Water baths, 37° and 55°C
  • Microtip sonicator (e.g., Branson Sonifier 250)
  • Additional reagents and equipment for harvesting and counting cells ( appendix 3F), DNA purification (unit 2.1), DNA quantitation ( appendix 3D), and agarose gel electrophoresis (unit 2.5)

Support Protocol 2: Antibody Pretreatment for DamIP

  Materials
  • Eukaryotic genomic DNA: salmon sperm DNA or DNA purified from cells
  • Buffer A: 10 mM potassium phosphate buffer, pH 8.0 ( appendix 22)
  • CNBr‐activated agarose (Sigma, C9210)
  • 1 mM HCl, 4°C
  • 0.2 M glycine, adjusted to pH 8.0 with NaOH
  • Buffer B: buffer A containing 1 M KCl
  • TE buffer ( appendix 22), with and without 0.05% (w/v) NaN 3
  • 0.2 M NaOH
  • 1× DamIP buffer (see recipe)
  • Affinity‐purified antibody against m6A (Megabase Research or Synaptic Systems)
  • 15‐ml Falcon tube
  • Boiling water bath
  • Benchtop centrifuge, refrigerated
  • Additional reagents and equipment for DNA purification (unit 2.1) and quantitation ( appendix 3D)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Bianchi‐Frias, D., Orian, A., Delrow, J.J., Vazquez, J., Rosales‐Nieves, A.E., and Parkhurst, S.M. 2004. Hairy transcriptional repression targets and cofactor recruitment in Drosophila. PLoS Biol. 2:E178.
   Collas, P. 2009. The state‐of‐the‐art of chromatin immunoprecipitation. Methods Mol. Biol. 567:1‐25.
   Filion, G.J., van Bemmel, J.G., Braunschweig, U., Talhout, W., Kind, J., Ward, L.D., Brugman, W., de Castro, I.J., Kerkhoven, R.M., Bussemaker, H.J., and van Steensel, B. 2010. Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell 143:212‐224.
   Guarne, A., Zhao, Q., Ghirlando, R., and Yang, W. 2002. In sights into negative modulation of E. coli replication initiation from the structure of SeqA‐hemimethylated DNA complex. Nat. Struct. Biol. 9:839‐843.
   Horton, J.R., Liebert, K., Hattman, S., Jeltsch, A., and Cheng, X. 2005. Transition from nonspecific to specific DNA interactions along the substrate‐recognition pathway of dam methyltransferase. Cell 121:349‐361.
   Horton, J.R., Liebert, K., Bekes, M., Jeltsch, A., and Cheng, X. 2006. Structure and substrate recognition of the Escherichia coli DNA adenine methyltransferase. J. Mol. Biol. 358:559‐570.
   Lopez, O.J., Quintanar, A., Padhye, N.V., and Nelson, M. 2003. Genotyping of DNA using sequence‐specific methyltransferases followed by immunochemical detection. J. Immunoassay Immunochem. 24:11‐28.
   Moss, T. and Leblanc, B. 2009. DNA‐Protein Interactions: Principles and Protocols, vol. 543, 3rd ed. Humana Press, New York.
   Orian, A., van Steensel, B., Delrow, J., Bussemaker, H.J., Li, L., Sawado, T., Williams, E., Loo, L.W., Cowley, S.M., Yost, C., Pierce, S., Edgar, B.A., Parkhurst, S.M., and Eisenman, R.N. 2003. Genomic binding by the Drosophila Myc, Max, Mad/Mnt transcription factor network. Genes Dev. 17:1101‐1114.
   Orian, A., Abed, M., Kenyagin‐Karsenti, D., and Boico, O. 2009. DamID: A methylation‐based chromatin profiling approach. Methods Mol. Biol. 567:155‐169.
   Ratel, D., Ravanat, J.L., Berger, F., and Wion, D. 2006a. N6‐Methyladenine: The other methylated base of DNA. Bioessays 28:309‐315.
   Ratel, D., Ravanat, J.L., Charles, M.P., Platet, N., Breuillaud, L., Lunardi, J., Berger, F., and Wion, D. 2006b. Undetectable levels of N6‐methyl adenine in mouse DNA: Cloning and analysis of PRED28, a gene coding for a putative mammalian DNA adenine methyltransferase. FEBS Lett. 580:3179‐3184.
   Ren, B., Robert, F., Wyrick, J.J., Aparicio, O., Jennings, E.G., Simon, I., Zeitlinger, J., Schreiber, J., Hannett, N., Kanin, E., Volkert, T.L., Wilson, C.J., Bell, S.P., and Young, R.A. 2000. Genome‐wide location and function of DNA binding proteins. Science 290:2306‐2309.
   Robertson, G., Hirst, M., Bainbridge, M., Bilenky, M., Zhao, Y., Zeng, T., Euskirchen, G., Bernier, B., Varhol, R., Delaney, A., Thiessen, , N., Griffith, O.L., He, A., Marra, M., Snyder, M., and Jones, S. 2007. Genome‐wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat. Methods 4:651‐657.
   Rottman, F.M., Bokar, J.A., Narayan, P., Shamtbaugh, M.E., and Ludwiczak, R. 1994. N6‐Adenosine methylation in mRNA: Substrate specificity and enzyme complexity. Biochimie 76:1109‐1114.
   van Steensel, B. and Henikoff, S. 2000. Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat. Biotechnol. 18:424‐428.
   van Steensel, B., Delrow, J., and Henikoff, S. 2001. Chromatin profiling using targeted DNA adenine methyltransferase. Nat. Genet. 27:304‐308.
   Venkatasubrahmanyam, S., Hwang, W.W., Meneghini, M.D., Tong, A.H., and Madhani, H.D. 2007. Genome‐wide, as opposed to local, antisilencing is mediated redundantly by the euchromatic factors Set1 and H2A.Z. Proc. Natl. Acad. Sci. U.S.A. 104:16609‐16614.
   Weber, M., Davies, J.J., Wittig, D., Oakeley, E.J., Haase, M., Lam, W.L., and Schubeler, D. 2005. Chromosome‐wide and promoter‐specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet. 37:853‐862.
   Wion, D. and Casadesus, J. 2006. N6‐Methyl‐adenine: An epigenetic signal for DNA‐protein interactions. Nat. Rev. Microbiol. 4:183‐192.
   Xiao, R., Roman‐Sanchez, R., and Moore, D.D. 2010. DamIP: A novel method to identify DNA binding sites in vivo Nucl. Recept. Signal 8:e003.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library