Digital Multiplexed Gene Expression Analysis Using the NanoString nCounter System

Meghana M. Kulkarni1

1 Harvard Medical School, Boston, Massachusetts
Publication Name:  Current Protocols in Molecular Biology
Unit Number:  Unit 25B.10
DOI:  10.1002/0471142727.mb25b10s94
Online Posting Date:  April, 2011
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


This unit presents the protocol for the NanoString nCounter Gene Expression Assay, a robust and highly reproducible method for detecting the expression of up to 800 genes in a single reaction with high sensitivity and linearity across a broad range of expression levels. The methodology serves to bridge the gap between genome‐wide (microarrays) and targeted (real‐time quantitative PCR) expression profiling. The nCounter assay is based on direct digital detection of mRNA molecules of interest using target‐specific, color‐coded probe pairs. It does not require the conversion of mRNA to cDNA by reverse transcription or the amplification of the resulting cDNA by PCR. Each target gene of interest is detected using a pair of reporter and capture probes carrying 35‐ to 50‐base target‐specific sequences. In addition, each reporter probe carries a unique color code at the 5′ end that enables the molecular barcoding of the genes of interest, while the capture probes all carry a biotin label at the 3′ end that provides a molecular handle for attachment of target genes to facilitate downstream digital detection. After solution‐phase hybridization between target mRNA and reporter‐capture probe pairs, excess probes are removed and the probe/target complexes are aligned and immobilized in the nCounter cartridge, which is then placed in a digital analyzer for image acquisition and data processing. Hundreds of thousands of color codes designating mRNA targets of interest are directly imaged on the surface of the cartridge. The expression level of a gene is measured by counting the number of times the color‐coded barcode for that gene is detected, and the barcode counts are then tabulated. Curr. Protoc. Mol. Biol. 94:25B.10.1‐25B.10.17. © 2011 by John Wiley & Sons, Inc.

Keywords: gene expression signature; multiplex analysis; signal transduction; high‐throughput screening; molecular barcode

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Strategic Planning
  • Basic Protocol 1: Hybridization of Target mRNA to Gene‐Specific Probe Pairs
  • Basic Protocol 2: Data Collection and Analysis
  • Commentary
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


Basic Protocol 1: Hybridization of Target mRNA to Gene‐Specific Probe Pairs

  • Sample (see Strategic Planning): total RNA (150 ng per hybridization reaction; −80°C) or cell lysate (from 2,500‐10,000 cells; −80°C)
  • nCounter GX CodeSet (probe pairs for user‐defined target genes; NanoString Technologies; −80°C)
  • Hybridization buffer (room temperature), provided in nCounter Prep Pack
  • RNase‐free, DNase‐free water
  • nCounter Prep Pack (NanoString Technologies), including: racked tips and foil piercers, 12‐tube strips and caps, tip sheaths (for storing tips, to prevent cross‐contamination and unnecessary tip consumption), and cartridge well seals (store at room temperature)
  • Tube‐Strip PicoFuge (Stratagene)
  • Thermocycler or hybridization oven
  • nCounter Prep Station (NanoString Technologies, no. NCT‐PREP‐120)
  • nCounter Sample Cartridges (NanoString Technologies; store at −20°C)
  • nCounter Prep Plates (foil‐sealed 96‐well plates; NanoString Technologies; store at 4°C)
  • Benchtop centrifuge with swinging bucket rotor for plates (e.g., Eppendorf)
NOTE: Sample Cartridges, Prep Plates, and Prep Packs can be purchased together in a comprehensive nCounter Master Kit.

Basic Protocol 2: Data Collection and Analysis

  • nCounter Digital Analyzer (NanoString Technologies, no. NCT‐DIGA‐120)
  • nCounter Imaging Oil Applicator and optical oil, provided with Digital Analyzer
  • nCounter Memory Stick (NanoString Technologies), provided with CodeSet
  • Personal computer with Microsoft Excel
PDF or HTML at Wiley Online Library



Literature Cited

   Amit, I., Garber, M., Chevrier, N., Leite, A.P., Donner, Y., Eisenhaure, T., Guttmann, M., Grenier, J.K., Li, W., Zuk, O., Schubert, L.A., Birditt, B., Shay, T., Goren, A., Zhang, X., Smith, Z., Deering, R., McDonald, R.C., Cabili, M., Bernstein, B.E., Rinn, J.L., Meissner, A., Root, D.E., Hacohen, N., and Regev, A. 2009. Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science 326:257‐263.
   Burczynski, M.E., Peterson, R.L., Twine, N.C., Zuberek, K.A., Brodeur, B.J., Casciotti, L., Maganti, V., Reddy, P.S., Strahs, A., Immermann, F., Spinelli, W., Schwertschlag, U., Slager, A.M., Cotreau, M.M., and Dorner, A.J. 2006. Molecular classification of Crohn's disease and ulcerative colitis patients using transcriptional profiles in peripheral blood mononuclear cells. J. Mol. Diagn. 8:51‐61.
   Devonshire, A.S., Elaswarapu, R., and Foy, C.A. 2010. Evaluation of external RNA controls for the standardisation of gene expression biomarker measurements. BMC Genomics 11:662.
   Evans, S.J., Datson, N.A., Kabbaj, M., Thompson, R.C., Vreugdenhil, E., De Kloet, E.R., Watson, S.J., and Akil, H. 2002. Evaluation of Affymetrix Gene Chip sensitivity in rat hippocampal tissue using SAGE analysis. Serial analysis of gene expression. Eur. J. Neurosci. 16:409‐413.
   Geiss, G.K., Bumgarner, R.E., Birditt, B., Dahl, T., Dowidar, N., Dunaway, D.L., Fell, H.P., Ferree, S., George, R.D., Grogan, T., James, J.J., Maysuria, M., Mitton, J.D., Oliveri, P., Osborn, J.L., Peng, T., Ratcliffe, A.L., Webster, P.J., Davidson, E.H., Hood, L., and Dimitrov, K. 2008. Direct multiplexed measurement of gene expression with color‐coded probe pairs. Nat. Biotechnol. 26:317‐325.
   Glas, A.M., Kersten, M.J., Delahaye, L.J., Witteveen, A.T., Kibbelaar, R.E., Velds, A., Wessels, L.F., Joosten, P., Kerkhoven, R.M., Bernards, R., van Krieken, J.H., Kluin, P.M., van't Veer, L.J., and de Jong, D. 2005. Gene expression profiling in follicular lymphoma to assess clinical aggressiveness and to guide the choice of treatment. Blood 105:301‐307.
   Golden, T.R., Hubbard, A., Dando, C., Herren, M.A., and Melov, S. 2008. Age‐related behaviors have distinct transcriptional profiles in Caenorhabditis elegans. Aging Cell 7:850‐865.
   Hsuih, T.C., Park, Y.N., Zaretsky, C., Wu, F., Tyagi, S., Kramer, F.R., Sperling, R., and Zhang, D.Y. 1996. Novel, ligation‐dependent PCR assay for detection of hepatitis C in serum. J. Clin. Microbio1. 34:501‐507.
   Lamb, J., Ramaswamy, S., Ford, H.L., Contreras, B., Martinez, R.V., Kittrell, F.S., Zahnow, C.A., Patterson, N., Golub, T.R., and Ewen, M.E. 2003. A mechanism of cyclin D1 action encoded in the patterns of gene expression in human cancer. Cell 114:323‐334.
   Lamb, J., Crawford, E.D., Peck, D., Modell, J.W., Blat, I.C., Wrobel, M.J., Lerner, J., Brunet, J.P., Subramanian, A., Ross, K.N., Reich, M., Hieronymus, H., Wei, G., Armstrong, S.A., Haggarty, S.J., Clemons, P.A., Wei, R., Carr, S.A., Lander, E.S., and Golub, T.R. 2006. The Connectivity Map: Using gene‐expression signatures to connect small molecules, genes, and disease. Science 313:1929‐1935.
   Landegren, U., Kaiser, R., Sanders, J., and Hood, L. 1988. A ligase‐mediated gene detection technique. Science 241:1077‐1080.
   Major, M.B., Roberts, B.S., Berndt, J.D., Marine, S., Anastas, J., Chung, N., Ferrer, M., Yi, X., Stoick‐Cooper, C.L., von Haller, P.D., Kategaya, L., Chien, A., Angers, S., MacCoss, M., Cleary, M.A., Arthur, W.T., and Moon, R.T. 2008. New regulators of Wnt/beta‐catenin signaling revealed by integrative molecular screening. Sci. Signal. 11:ra12.
   Nevins, J.R. and Potti, A. 2007. Mining gene expression profiles: Expression signatures as cancer phenotypes. Nat. Rev. Genet. 8:601‐609.
   Nilsson, M., Barbany, G., Antson, D.O., Gertow, K., and Landegren, U. 2000. Enhanced detection and distinction of RNA by enzymatic probe ligation. Nat. Biotechnol. 18:791‐793.
   Peck, D., Crawford, E.D., Ross, K.N., Stegmaier, K., Golub, T.R., and Lamb, J. 2006. A method for high‐throughput gene expression signature analysis. Genome Biol. 7:R61.
   Rhodes, D.R. and Chinnaiyan, A.M. 2005. Integrative analysis of the cancer transcriptome. Nat. Genet. 37:S31‐S37.
   Rhodes, D.R., Yu, J., Shanker, K., Deshpande, N., Varambally, R., Ghosh, D., Barrette, T., Pandey, A., and Chinnaiyan, A.M. 2004. Large‐scale meta‐analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc. Natl. Acad. Sci. U.S.A. 101:9309‐9314.
   Rhodes, D.R., Kalyana‐Sundaram, S., Mahavisno, V., Barrette, T.R., Ghosh, D., and Chinnaiyan, A.M. 2005. Mining for regulatory programs in the cancer transcriptome. Nat. Genet. 37:579‐583.
   Spurgeon, S.L., Jones, R.C., and Ramakrishnan, R. 2008. High‐throughput gene expression measurement with real time PCR in a microfluidic dynamic array. PLoSONE 3:e1662.
   Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., and Mesirov, J.P. 2005. Gene set enrichment analysis: A knowledge‐based approach for interpreting genome‐wide expression profiles. Proc. Natl. Acad. Sci. U.S.A. 102:15545‐15550.
   van de Vijver, M.J., He, Y.D., van't Veer, L.J., Dai, H., Hart, A.A., Voskuil, D.W., Schreiber, G.J., Peterse, J.L., Roberts, C., Marton, M.J., Parrish, M., Atsma, D., Witteveen, A., Glas, A., Delahaye, L., van der Velde, T., Bartelink, H., Rodenhuis, S., Rutgers, E.T., Friend, S.H., and Bernards, R. 2002. A gene‐expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347:1999‐2009.
Internet Resources
  NanoString Technologies website for detailed information regarding products, related literature, and applications.
  The Molecular Signatures Database (MSigDB) is a collection of gene sets, including positional gene sets, curated gene sets, motif gene sets, computational gene sets, and gene ontology gene sets.
  A database of cancer gene expression profiles.
  Supports a bead‐based platform for high‐throughput gene expression signature analysis for the measurement of up to 100 transcripts in many thousands of samples.
PDF or HTML at Wiley Online Library