Minimizing Variation Due to Genotype and Environment

Carmen A. Argmann1, Johan Auwerx2

1 Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 2 Institut de Génétique et de Biologie Moléculaire et Cellulaire and Institut Clinique de la Souris, Illkirch
Publication Name:  Current Protocols in Molecular Biology
Unit Number:  Unit 29A.2
DOI:  10.1002/0471142727.mb29a02s73
Online Posting Date:  February, 2006
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Mouse models are increasingly popular tools to study and characterize the molecular and physiological bases for human diseases. Due to the readily available genetic tools to construct mouse models of complex diseases, the flow of efficient and vigilant mouse phenotyping has now become the bottleneck in mouse functional genomics. This unit addresses the importance of minimizing and defining confounding genetic and environmental sources of variability.

Keywords: genotype; phenotype; environment; strain variation; genetic background

PDF or HTML at Wiley Online Library

Table of Contents

  • Genetic Background
  • Environment
  • Conclusion
  • Literature Cited
  • Tables
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Banbury Conference on Genetic Background in Mice. 1997. Mutant mice and neuroscience: Recommendations concerning genetic background. Neuron 19:755‐759.
   Burgess, S.C., Jeffrey, F.M., Storey, C., Milde, A., Hausler, N., Merritt, M.E., Mulder, H., Holm, C., Sherry, A.D., and Malloy, C.R. 2005. Effect of murine strain on metabolic pathways of glucose production after brief or prolonged fasting. Am. J. Physiol. Endocrino. 289:E53‐E61.
   Champy, M., Selloum, M., Piard, L., Zietler, V., Caradec, C., Chambon, P., and Auwerx, J. 2004. Mouse functional genomics requires standardization of mouse handling and housing conditions. Mamm. Genome 15:768‐783.
   Collins, S.C., Wallis, R.H., Wallace, K., Bihoreau, M.T., and Gauguier, D. 2003. Marker‐assisted congenic screening (MACS): A database tool for the efficient production and characterization of congenic lines. Mamm. Genome 14:350‐356.
   Crabbe, J.C., Wahlsten, D., and Dudek, B.C. 1999. Genetics of mouse behavior: Interactions with laboratory environment. Science 284:1670‐1672.
   Green, E.C., Gkoutos, G.V., Lad, H.V., Blake, A., Weekes, J., and Hancock, J.M. 2005. EMPReSS: European mouse phenotyping resource for standardized screens. Bioinformatics 21:2930‐2931.
   Lathe, R. 2004. The individuality of mice. Genes Brain Behav. 3:317‐327.
   Paigen, B., Morrow, A., Brandon, C., Mitchell, D., and Holmes, P. 1985. Variation in susceptibility to atherosclerosis among inbred strains of mice. Atherosclerosis 7:65‐73.
   Schreyer, S.A., Wilson, D.L., and LeBoeuf, R.C. 1998. C57BL/6 mice fed high fat diets as models for diabetes‐accelerated atherosclerosis. Atherosclerosis 136:17‐24.
   Seburn, K. 2001. Mouse Phenome Database Project: Metabolic Characterization. The Jackson Laboratory, Bar Harbor, Maine.
   Stiedl, O., Radulovic, J., Lohmann, R., Birkenfeld, K., Palve, M., Kammermeier, J., Sananbenesi, F., and Spiess, J. 1999. Strain and substrain differences in context‐ and tone‐dependent fear conditioning of inbred mice. Behav. Brain Res. 104:1‐12.
   Upchurch, M. and Wehner, J.M. 1988. Differences between inbred strains of mice in Morris water maze performance. Behav. Genet. 18:55‐68.
   Willott, J.F., Erway, L.C., Archer, J.R., and Harrison, D.E. 1995. Genetics of age‐related hearing loss in mice. II. Strain differences and effects of caloric restriction on cochlear pathology and evoked response thresholds. Hear Res. 88:143‐155.
   Wotjak, C.T. 2004. Of mice and men. B.I.F. Futura 19:158‐169.
   Würbel, H. 2001. Ideal homes? Housing effects on rodent brain and behaviour. Trends Neurosci. 24:207‐211.
   Zhou, X. and Hansson, G.K. 2004. Effect of sex and age on serum biochemical reference ranges in C57BL/6J mice. Comp. Med. 54:176‐178.
PDF or HTML at Wiley Online Library