Isolating Viral and Host RNA Sequences from Archival Material and Production of cDNA Libraries for High‐Throughput DNA Sequencing

Yongli Xiao1, Zong‐Mei Sheng1, Jeffery K. Taubenberger1

1 Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
Publication Name:  Current Protocols in Microbiology
Unit Number:  Unit 1E.8
DOI:  10.1002/9780471729259.mc01e08s37
Online Posting Date:  May, 2015
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

The vast majority of surgical biopsy and post‐mortem tissue samples are formalin‐fixed and paraffin‐embedded (FFPE), but this process leads to RNA degradation that limits gene expression analysis. As an example, the viral RNA genome of the 1918 pandemic influenza A virus was previously determined in a 9‐year effort by overlapping RT‐PCR from post‐mortem samples. Using the protocols described here, the full genome of the 1918 virus was determined at high coverage in one high‐throughput sequencing run of a cDNA library derived from total RNA of a 1918 FFPE sample after duplex‐specific nuclease treatments. This basic methodological approach should assist in the analysis of FFPE tissue samples isolated over the past century from a variety of infectious diseases. © 2015 by John Wiley & Sons, Inc.

Keywords: RNA; cDNA; high‐throughput sequencing; library; influenza; polymerase chain reaction

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Isolation of RNA from Archival Fixed Tissue Samples
  • Basic Protocol 2: Preparation of Sequencing Library
  • Basic Protocol 3: Normalization of Library Using Duplex‐Specific Thermostable Nuclease
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Isolation of RNA from Archival Fixed Tissue Samples

  Materials
  • Tissue specimen in 6‐μm sections
  • CitriSolv (Fisher Scientific)
  • Absolute and 75% (v/v) ethanol
  • 20 mg/ml proteinase K in molecular‐biology‐grade water, stored at −20°C
  • Extraction buffer (see recipe)
  • TRIzol LS, stored at 4°C
  • Chloroform
  • 20 μg/μl glycogen, stored at −20°C
  • Isopropanol
  • DEPC‐treated water
  • 1 U/μl DNase I (amplification grade) and 10× DNase reaction buffer
  • 25 mM EDTA
  • Agilent RNA 6000 Nano kit (including RNA ladder, marker, gel matrix, dye concentrate, spin filter, and RNA chip)
  • 1.5‐ml RNase‐free microcentrifuge tubes
  • 0.5‐ml RNase‐free vials
  • 55°C oven
  • 55°, 65°, and 70°C water baths
  • Agilent 2100 Bioanalyzer (including IKA vortexer and adapter)

Basic Protocol 2: Preparation of Sequencing Library

  Materials
  • Random primers
  • RNA from archival FFPE samples (see protocol 1)
  • DEPC‐treated water
  • SuperScript II
  • TruSeq RNA sample preparation kit v2 (including first and second strand master mixes, resuspension buffer, end repair mix, A‐tailing mix, ligation mix, RNA adapter index, stop ligation buffer, PCR primer cocktail, PCR master mix)
  • AMPure XP beads
  • 80% (v/v) ethanol
  • Agilent high‐sensitivity DNA kit (including gel matrix, dye concentrate, marker, ladder, spin filter, and high‐sensitivity DNA chip)
  • 0.2‐ml thin‐wall PCR tubes
  • Thermal cycler
  • 1.5‐ml microcentrifuge tubes
  • Magnetic stand
  • Agilent 2100 Bioanalyzer (including IKA vortexer and adapter)

Basic Protocol 3: Normalization of Library Using Duplex‐Specific Thermostable Nuclease

  Materials
  • 1 M HEPES buffer, pH 7.2‐7.5
  • 5 M NaCl
  • DEPC‐treated water
  • Sequencing library (see protocol 2)
  • Duplex‐specific nuclease kit (Axxora; including 10× DSN master buffer, DSN enzyme, and 2× DSN stop solution)
  • AMPure XP beads
  • 80% (v/v) ethanol
  • EB buffer (Qiagen; 10 mM Tris·Cl, pH 8.5)
  • Phusion polymerase with 5× reaction buffer and 25 mM dNTPs (Life Technologies)
  • PCR primers PE 1.0 and 2.0 (Illumina)
  • 200‐μl PCR tubes, sterile and nuclease‐free
  • Thermal cycler
  • 68°C heat block
  • 1.5‐ml microcentrifuge tubes (if needed for magnetic stand)
  • Magnetic stand
  • Additional reagents and equipment for library validation (see protocol 2)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   April, C. , Klotzle, B. , Royce, T. , Wickham‐Garcia, E. , Boyaniwsky, T. , Izzo, J. , Cox, D. , Jones, W. , Rubio, R. , Holton, K. , Matulonis, U. , Quackenbush, J. , and Fan, J.‐B. 2009. Whole‐genome gene expression profiling of formalin‐fixed, paraffin‐embedded tissue samples. PLoS One 4:e8162.
   Baldwin, D.A. , Feldman, M. , Alwine, J.C. , and Robertson, E.S. 2014. Metagenomic assay for identification of microbial pathogens in tumor tissues. mBio 5:e01714‐01714.
   Beck, A.H. , Weng, Z. , Witten, D.M. , Zhu, S. , Foley, J.W. , Lacroute, P. , Smith, C.L. , Tibshirani, R. , van de Rijn, M. , Sidow, A. , and West, R.B. 2010. 3′‐End sequencing for expression quantification (3SEQ) from archival tumor samples. PLoS One 5:e8768.
   Bibby, K. 2013. Metagenomic identification of viral pathogens. Trends Biotechnol. 31:275‐279.
   Evers, D.L. , Fowler, C.B. , Cunningham, B.R. , Mason, J.T. , and O'Leary, T.J. 2011a. The effect of formaldehyde fixation on RNA: Optimization of formaldehyde adduct removal. J. Mol. Diagn. 13:282‐288.
   Evers, D.L. , He, J. , Kim, Y.H. , Mason, J.T. , and O'Leary, T.J. 2011b. Paraffin embedding contributes to RNA aggregation, reduced RNA yield, and low RNA quality. J. Mol. Diagn. 13:687‐694.
   Firth, C. and Lipkin, W.I. 2013. The genomics of emerging pathogens. Annu. Rev. Genom. Hum. Genet. 14:281‐300.
   Foss, R.D. , Guha‐Thakurta, N. , Conran, R.M. , and Gutman, P. 1994. Effects of fixative and fixation time on the extraction and polymerase chain reaction amplification of RNA from paraffin‐embedded tissue. Comparison of two housekeeping gene mRNA controls. Diagn. Mol. Pathol. 3:148‐155.
   Fox, C.H. , Johnson, F.B. , Whiting, J. , and Roller, P.P. 1985. Formaldehyde fixation. J. Histochem. Cytochem. 33:845‐853.
   Kayser, K. , Stute, H. , Lübcke, J. , and Wazinski, U. 1988. Rapid microwave fixation—A comparative morphometric study. Histochem. J. 20:347‐352.
   Krafft, A.E. , Duncan, B.W. , Bijwaard, K.E. , Taubenberger, J.K. , and Lichy, J.H. 1997. Optimization of the isolation and amplification of RNA from formalin‐fixed, paraffin‐embedded tissue: The Armed Forces Institute of Pathology experience and literature review. Mol. Diagn. 2:217‐230.
   Masuda, N. , Ohnishi, T. , Kawamoto, S. , Monden, M. , and Okubo, K. 1999. Analysis of chemical modification of RNA from formalin‐fixed samples and optimization of molecular biology applications for such samples. Nucleic. Acids Res. 27:4436‐4443.
   McKinney, M.D. , Moon, S.J. , Kulesh, D.A. , Larsen, T. , and Schoepp, R.J. 2009. Detection of viral RNA from paraffin‐embedded tissues after prolonged formalin fixation. J. Clin. Virol. 44:39‐42.
   Mittempergher, L. , de Ronde, J.J. , Nieuwland, M. , Kerkhoven, R.M. , Simon, I. , Rutgers, E.J. , Wessels, L.F. , and Van't Veer, L.J. 2011. Gene expression profiles from formalin fixed paraffin embedded breast cancer tissue are largely comparable to fresh frozen matched tissue. PLoS One 6:e17163.
   O'Leary, T.J. 2003. Infectious diseases. In Advanced Diagnostic Methods in Pathology ( T.J. O'Leary , ed.), pp. 159‐190. Saunders, Philadelphia.
   Perlmutter, M.A. , Best, C.J. , Gillespie, J.W. , Gathright, Y. , González, S. , Velasco, A. , Linehan, W.M. , Emmert‐Buck, M.R. , and Chuaqui, R.F. 2004. Comparison of snap freezing versus ethanol fixation for gene expression profiling of tissue specimens. J. Mol. Diagn. 6:371‐377.
   Schweiger, M.R. , Kerick, M. , Timmermann, B. , Albrecht, M.W. , Borodina, T. , Parkhomchuk, D. , Zatloukal, K. , and Lehrach, H. 2009. Genome‐wide massively parallel sequencing of formaldehyde fixed‐paraffin embedded (FFPE) tumor tissues for copy‐number‐ and mutation‐analysis. PLoS One 4:e5548.
   Service, R.F. 2006. Gene sequencing. The race for the $1000 genome. Science 311:1544‐1546.
   Shagin, D.A. , Rebrikov, D.V. , Kozhemyako, V.B. , Altshuler, I.M. , Shcheglov, A.S. , Zhulidov, P.A. , Bogdanova, E.A. , Staroverov, D.B. , Rasskazov, V.A. , and Lukyanov, S. 2002. A novel method for SNP detection using a new duplex‐specific nuclease from crab hepatopancreas. Genome Res. 12:1935‐1942.
   Singh, R.R. , Patel, K.P. , Routbort, M.J. , Reddy, N.G. , Barkoh, B.A. , Handal, B. , Kanagal‐Shamanna, R. , Greaves, W.O. , Medeiros, L.J. , Aldape, K.D. , and Luthra, R. 2013. Clinical validation of a next‐generation sequencing screen for mutational hotspots in 46 cancer‐related genes. J. Mol. Diagn. 15:607‐622.
   Tang, W. , David, F.B. , Wilson, M.M. , Barwick, B.G. , Leyland‐Jones, B.R. , and Bouzyk, M.M. 2009. DNA extraction from formalin‐fixed, paraffin‐embedded tissue. Cold Spring Harb. Protoc. 2009:pdb prot5138.
   Tariq, M.A. , Kim, H.J. , Jejelowo O. , and Pourmand1, N. 2011. Whole‐transcriptome RNAseq analysis from minute amount of total RNA. Nucleic Acids Res. 39:e120.
   Taubenberger, J. K. , Reid, A.H. , Krafft, A.E. , Bijwaard, K.E. , and Fanning, T.G. 1997. Initial genetic characterization of the 1918 “Spanish” influenza virus. Science 275:1793‐1796.
   Weng, L. , Wu, X. , Gao, H. , Mu, B. , Li, X. , Wang, J.H. , Guo, C. , Jin, J.M. , Chen, Z. , Covarrubias, M. , Yuan, Y.C. , Weiss, L.M. , and Wu, H. 2010. MicroRNA profiling of clear cell renal cell carcinoma by whole‐genome small RNA deep sequencing of paired frozen and formalin‐fixed, paraffin‐embedded tissue specimens. J. Pathol. 222:41‐51.
   Wood, H.M. , Belvedere, O. , Conway, C. , Daly, C. , Chalkley, R. , Bickerdike, M. , McKinley, C. , Egan, P. , Ross, L. , Hayward, B. , Morgan, J. , Davidson, L. , MacLennan, K. , Ong, T.K. , Papagiannopoulos, K. , Cook, I. , Adams, D.J. , Taylor, G.R. , and Rabbitts, P. 2010. Using next‐generation sequencing for high resolution multiplex analysis of copy number variation from nanogram quantities of DNA from formalin‐fixed paraffin‐embedded specimens. Nucleic Acids Res. 38:e151.
   Xiao, Y.L. , Kash, J.C. , Beres, S.B. , Sheng, Z.‐M. , Musser, J.M. , and Taub, J.K. 2013. High‐throughput RNA sequencing of a formalin‐fixed, paraffin‐embedded autopsy lung tissue sample from the 1918 influenza pandemic. J. Pathol. 229:535‐545.
   Yi, H. , Cho, Y.J. , Won, S. , Lee, J.E. , Jin , Yu, H. , Kim, S. , Schroth, G.P. , Luo, S. , and Chun, J. 2011. Duplex‐specific nuclease efficiently removes rRNA for prokaryotic RNA‐seq. Nucleic Acids Res. 39:e140.
   Young, B.D. and Anderson, M. 1985. Quantitative analysis of solution hybridisation. In Nucleic Acids Hybridisation, a Practical Approach ( B.D. Hames and S.J. Higgins , eds.), pp. 47‐71. IRL Press, Oxford.
   Zhao, W. , He, X. , Hoadley, K.A. , Parker, J.S. , Hayes, D.N. , and Perou, C.M. 2014. Comparison of RNA‐Seq by poly (A) capture, ribosomal RNA depletion, and DNA microarray for expression profiling. BMC Genomics 15:419.
   Zhulidov, P.A. , Bogdanova, E.A. , Shcheglov, A.S. , Vagner, L.L. , Khaspekov, G.L. , Kozhemyako, V.B. , Matz, M.V. , Meleshkevitch, E. , Moroz, L.L. , Lukyanov, S.A. , and Shagin, D.A. 2004. Simple cDNA normalization using kamchatka crab duplex‐specific nuclease. Nucleic Acids Res. 32:e37.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library