2‐D Gel‐Based Proteomic Approaches to Antibiotic Drug Discovery

Nadja Raatschen1, Julia Elisabeth Bandow1

1 Ruhr University Bochum, Bochum, Germany
Publication Name:  Current Protocols in Microbiology
Unit Number:  Unit 1F.2
DOI:  10.1002/9780471729259.mc01f02s26
Online Posting Date:  August, 2012
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


The global analysis of changes in the protein composition of bacterial cells in response to treatment with antibiotic agents grants insights into the physiological response of cells to inhibition of vital cellular functions. This unit gives an overview of how global proteomic studies can impact antibacterial drug discovery by identifying or validating compound mechanism of action and by increasing the confidence in the value of genes with unknown function as potential new targets. It describes the design and function of a reference compendium of proteomic responses to inhibition of vital cellular functions through antibacterial agents or genetic down‐regulation of potential target genes. An overview of the workflow for two‐dimensional gel electrophoresis‐based experiments is also presented. Curr. Protoc. Microbiol. 26:1F.2.1‐1F.2.16. © 2012 by John Wiley & Sons, Inc.

Keywords: antibiotics; two‐dimensional gel electrophoresis; two‐dimensional polyacrylamide gel; peptide mass fingerprinting; PMF; proteomics; mechanism of action; conditional mutants; stress response

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • What is Proteomics?
  • Use and Design of the Reference Compendium of Proteomic Responses
  • Experimental Design and Workflow
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

   Adams, L.D. and Gallagher, S.R. 2004. Two‐dimensional gel electrophoresis. Current Protoc. Mol. Biol. 67:10.4.1‐10.4.23.
   Adessi, C., Miege, C., Albrieux, C., and Rabilloud, T. 1997. Two‐dimensional electrophoresis of membrane proteins: A current challenge for immobilized pH gradients. Electrophoresis 18:127‐135.
   Aebersold, R. and Mann, M. 2003. Mass spectrometry‐based proteomics. Nature 422:198‐207.
   Agabian, N. and Unger, B. 1978. Caulobacter crescentus cell envelope: Effect of growth conditions on murein and outer membrane protein composition. J. Bacteriol. 133:987‐994.
   Apfel, C.M., Locher, H., Evers, S., Takács, B., Hubschwerlen, C., Pirson, W., Page, M.G., and Keck, W. 2001. Peptide deformylase as an antibacterial drug target: Target validation and resistance development. Antimicrob. Agents Chemother. 45:1058‐1064.
   Argyrou, A., Jin, L., Siconilfi‐Baez, L., Angeletti, R.H., and Blanchard, J.S. 2006. Proteome‐wide profiling of isoniazid targets in Mycobacterium tuberculosis. Biochemistry 45:13947‐13953.
   Armitage, J.P., Dorman, C.J., Hellingwerf, K., Schmitt, R., Summers, D., and Holland, B. 2003. Thinking and decision making, bacterial style: Bacterial Natural Networks, Obernai, France, 7th‐12th June 2002. Mol. Microbiol. 47:583‐593.
   Bandow, J.E., Brötz, H., and Hecker, M. 2002. Bacillus subtilis tolerance of moderate concentrations of rifampin involves the sigma(B)‐dependent general and multiple stress response. J. Bacteriol. 184:459‐467.
   Bandow, J.E., Becher, D., Büttner, K., Hochgräfe, F., Freiberg, C., Brötz, H., and Hecker, M. 2003a. The role of peptide deformylase in protein biosynthesis: A proteomic study. Proteomics 3:299‐306.
   Bandow, J.E., Brötz, H., Leichert, L.I.O., Labischinski, H., and Hecker, M. 2003b. Proteomic approach to understanding antibiotic action. Antimicrob. Agents Chemother. 47:948‐955.
   Bandow, J.E., Baker, J.D., Berth, M., Painter, C., Sepulveda, O.J., Clark, K.A., Kilty, I., and VanBogelen, R.A. 2008. Improved image analysis workflow for 2‐D gels enables large‐scale 2‐D gel‐based proteomics studies—COPD biomarker discovery study. Proteomics 8:3030‐3041.
   Beyer, D., Kroll, H.P., Endermann, R., Schiffer, G., Siegel, S., Bauser, M., Pohlmann, J., Brands, M., Ziegelbauer, K., Haebich, D., Eymann, C., and Brötz‐Oesterhelt, H. 2004. New class of bacterial phenylalanyl‐tRNA synthetase inhibitors with high potency and broad‐spectrum activity. Antimicrob. Agents Chemother. 48:525‐532.
   Böddeker, N., Bahador, G., Gibbs, C., Mabery, E., Wolf, J., Xu, L., and Watson, J. 2002. Characterization of a novel antibacterial agent that inhibits bacterial translation. RNA 8:1120‐1128.
   Brötz‐Oesterhelt, H. and Sass, P. 2010. Postgenomic strategies in antibacterial drug discovery. Future Microbiol. 5:1553‐1579.
   Brötz‐Oesterhelt, H., Bandow, J.E., and Labischinski, H. 2005. Bacterial proteomics and its role in antibacterial drug discovery. Mass Spectrom. Rev. 24:549‐565.
   Domon, B. and Aebersold, R. 2010. Options and considerations when selecting a quantitative proteomics strategy. Nat. Biotechnol. 28:710‐721.
   Evers, S., Di Padova, K., Meyer, M., Langen, H., Fountoulakis, M., Keck, W., and Gray, C.P. 2001. Mechanism‐related changes in the gene transcription and protein synthesis pattern of Haemophilus influenzae after treatment with transcriptional and translational inhibitors. Proteomics 1:522‐544.
   Eymann, C., Homuth, G., Scharf, C., and Hecker, M. 2002. Bacillus subtilis functional genomics: Global characterization of the stringent response by proteome and transcriptome analysis. J. Bacteriol. 184:2500‐2520.
   Fleischmann, R.D., Adams, M.D., White, O., Clayton, R.A., Kirkness, E.F., Kerlavage, A.R., Bult, C.J., Tomb, J.F., Dougherty, B.A., Merrick, J.M., McKenny, K., Sutton, G., FitzHugh, W., Fields, W., Gocayne, J.D., Scott, J., Shirley, R., Liu, L.I., Glodek, A., Kelley, J.M., Weidman, J.F., Phillips, C.A., Spriggs, A., Hedblom, E., Cotton, M.D., Utterback, T.R., Hanna, M.C., Nguyen, D.T., Saudek, D.M., Brandon, R.C., Fine, L.D., Fritchman, L.J., Fuhrmann, J.L., Geoghagen, N.S.M., Gnehm, C.L., McDonald, L.A., Small, K.V., Fraser, C.M., Smith, H.O., and Venter, J.C. 1995. Whole‐genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496‐512.
   Freiberg, C. and Brötz‐Oesterhelt, H. 2005. Functional genomics in antibacterial drug discovery. Drug Discov. Today 10:927‐935.
   Fränzel, B., Frese, C., Penkova, M., Metzler‐Nolte, N., Bandow, J.E., and Wolters, D.A. 2010. Corynebacterium glutamicum exhibits a membrane‐related response to a small ferrocene‐conjugated antimicrobial peptide. J. Biol. Inorg. Chem. 15:1293‐1303.
   Gmuender, H., Kuratli, K., Di Padova, K., Gray, C.P., and Evers, S. 2001. Gene expression changes triggered by exposure of Haemophilus influenzea to novobiocin or ciprofloxacin: Combined transcription and translation analysis. Genome Res. 11:28‐42.
   Gomes, S.L., Juliani, M.H., Maia, J.C., and Silva, A.M. 1986. Heat shock protein synthesis during development in Caulobacter crescentus. J. Bacteriol. 168:923‐930.
   Görg, A., Postel, W., and Günther, S. 1988. The current state of two‐dimensional electrophoresis with immobilized pH gradients. Electrophoresis 9:531‐546.
   Görg, A., Weiss, W., and Dunn, M.J. 2004. Current two‐dimensional electrophoresis technology for proteomics. Proteomics 4:3665‐3685.
   Gosset, W.S. 1908. The probable error of a mean. Biometrika 6:1‐25.
   Hecker, M. 2003. A proteomic view of cell physiology of Bacillus subtilis—bringing the genome sequence to life. Adv. Biochem. Eng. Biotechnol. 83:57‐92.
   Hecker, M., Antelmann, H., Büttner, K., and Bernhardt, J., 2008. Gel‐based proteomics of Gram‐positive bacteria: A powerful tool to address physiological questions. Proteomics 8:4958‐4975.
   Hecker, M., Reder, A., Fuchs, S., Pagels, M., and Engelmann, S. 2009. Physiological proteomics and stress/starvation responses in Bacillus subtilis and Staphylococcus aureus. Res. Microbiol. 160:245‐258.
   Henzel, W.J., Billeci, T.M., Stults, J.T., Wong, S.C., Grimley, C., and Watanabe, C. 1993. Identifying proteins from two‐dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc. Natl. Acad. Sci. U.S.A. 90:5011‐5015.
   Hughes, M.A., Silva, J.C., Geromanos, S.J., and Townsend, C.A. 2006. Quantitative proteomic analysis of drug‐induced changes in mycobacteria. J. Proteome Res. 5:54‐63.
   Jungblut, P.R., Schiele, F., Zimny‐Arndt, U., Ackermann, R., Schmid, M., Lange, S., Stein, R., and Pleissner, K.P. 2010. Helicobacter pylori proteomics by 2‐DE/MS, 1‐DE/MS and functional data mining. Proteomics 10:182‐193.
   Jürgen, B., Hanschke, R., Sarvas, M., Hecker, M., and Schweder, T. 2001. Proteome and transcriptome based analysis of Bacillus subtilis cells overproducing an insoluble heterologous protein. Appl. Microbiol. Biotechnol. 55:326‐332.
   Kaan, T., Homuth, G., Mäder, U., Bandow, J., and Schweder, T. 2002. Genome‐wide transcriptional profiling of the Bacillus subtilis cold‐shock response. Microbiology 148:3441‐3455.
   Klose, J. 1975. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 26:231‐243.
   Krueger, J.H. and Walker, G.C. 1984. groEL and dnaK genes of Escherichia coli are induced by UV irradiation and nalidixic acid in an htpR+‐dependent fashion. Proc. Natl. Acad. Sci. U.S.A. 81:1499‐1503.
   Lilley, K.S., Razzaq, A., and Dupree, P. 2002. Two‐dimensional gel electrophoresis: Recent advances in sample preparation, detection and quantitation. Curr. Opin. Chem. Biol. 6:46‐50.
   Limburg, E., Gahlmann, R., Kroll, H.P., and Beyer, D. 2004. Ribosomal alterations contribute to bacterial resistance against the dipeptide antibiotic TAN 1057. Antimicrob. Agents Chemother. 48:619‐622.
   Linn, T. and Losick, R. 1976. The program of protein synthesis during sporulation in Bacillus subtilis. Cell 8:103‐114.
   Molloy, M., Brzezinski, E.E., Hang, J., McDowell, M.T., and VanBogelen, R.A. 2003. Overcoming the technical variation and biological variation in quantitative proteomics. Proteomics 3:1912‐1919.
   Mostertz, J., Scharf, C., Hecker, M., and Homuth, G. 2004. Transcriptome and proteome analysis of Bacillus subtilis gene expression in response to superoxide and peroxide stress. Microbiology 150:497‐512.
   Ng, W.L., Kazmierczak, K.M., Robertson, G.T., Gilmour, R., and Winkler, M.E. 2003. Transcriptional regulation and signature patterns revealed by microarray analyses of Streptococcus pneumoniae R6 challenged with sublethal concentrations of translation inhibitors. J. Bacteriol. 185:359‐370.
   Nyman, T.A. 2001. The role of mass spectrometry in proteome studies. Biomol. Eng. 18:221‐227.
   O'Farrell, P.H. 1975. High resolution two‐dimensional electrophoresis of proteins. J. Biol. Chem. 250:4007‐4021.
   Payne, D.J., Gwynn, M.N., Holmes, D.J., and Pompliano, D.L. 2007. Drugs for bad bugs: Confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov. 6:29‐40.
   Peterson, J.D., Umayam, L.A., Dickinson, T., Hickey, E.K., and White, O. 2001. The comprehensive Microbial Resource. Nucleic Acids Res. 1:123‐125.
   Poland, J., Cahill, M.A., and Sinha, P. 2003. Isoelectric focusing in long immobilized pH gradient gels to improve protein separation in proteomic analysis. Electrophoresis 24:1271‐1275.
   Sasse, J. and Gallagher, S.R. 2009. Staining proteins in gels. Curr. Protoc. Mol. Biol. 85:10.6.1‐10.6.27.
   Sender, U., Bandow, J., Engelmann, S., Lindequist, U., and Hecker, M. 2004. Proteomic signatures for daunomycin and adriamycin in Bacillus subtilis. Pharmazie 59:65‐70.
   Singh, V.K., Jayaswal, R.K., and Wilkinson, B.J. 2001. Cell wall‐active antibiotic induced proteins of Staphylococcus aureus identified using a proteomic approach. FEMS Microbiol. Lett. 199:79‐84.
   Stone, K.L., DeAngelis, R., LoPresti, M., Jones, J., Papov, V.V., and Williams, K.R. 1998. Use of liquid chromatography electrospray ionization tandem mass spectrometry (LC‐ESI‐MS/MS) for routine identification of enzymatically digested proteins separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Electrophoresis 19:1046‐1052.
   Tonella, L., Hoogland, C., Binz, P.A., Appel, R.D., Hochstrasser, D.F., and Sanchez, J.C. 2001. New perspectives in the Escherichia coli proteome investigation. Proteomics 1:409‐423.
   VanBogelen, R.A. and Neidhardt, F.C. 1990. Ribosomes as sensors of heat and cold shock in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 87:5589‐5593.
   VanBogelen, R.A., Schiller, E.E., Thomas, J.D., and Neidhardt, F.C. 1999. Diagnosis of cellular states of microbial organisms using proteomics. Electrophoresis 20:2149‐2159.
   Wang, R. and Marcotte, E.M. 2008. The proteomic response of Mycobacterium smegmatis to anti‐tuberculosis drug suggests targeted pathways. J. Proteome Res. 7:855‐865.
   Wasinger, V.C., Cordwell, S.J., Cerpa‐Poljak, A., Yan, J.X., Gooley, A.A., Wilkins, M.R., Duncan, M.W., Harris, R., Williams, K.L., and Humphery‐Smith, I. 1995. Progress with gene‐product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis 16:1090‐1094.
   Wecke, T., Zühlke, D., Mäder, U., Jordan, S., Voigt, B., Pelzer, S., Labischinski, H., Homuth, G., Hecker, M., and Mascher, T. 2009. Daptomycin versus Friulimicin B: In‐depth profiling of Bacillus subtilis cell envelope stress responses. Antimicrob. Agents Chemother. 53:1619‐1623.
   Wenzel, M. and Bandow, J. 2011. Proteomic signatures in antibiotic research. Proteomics 11:3256‐3268.
   Wenzel, M., Patra, M., Albrecht, D., Chen, D.Y., Nicolaou, K.C., Metzler‐Nolte, N., and Bandow, J.E. 2011. Proteomic signature of fatty acid biosynthesis inhibition available for in vivo mechanism‐of‐action studies. Antimicrob. Agents Chemother. 55:2590‐2596.
   Westbrook, J.A., Yan, J.X., Wait, R., Welson, S.Y., and Dunn, M.J. 2001. Zooming‐in on the proteome: Very narrow‐range immobilised pH gradients reveal more protein species and isoforms. Electrophoresis 22:2865‐2871.
   WHO. 2012. The evolving threat of antimicrobial resistance—Options for action. World Health Organization, Geneva, http://whqlibdoc.who.int/publications/2012/9789241503181_eng.pdf.
Key References
   Brötz‐Oesterhelt and Sass, 2010. See above.
  Describes recent and current efforts in antibacterial drug discovery.
   Wenzel and Bandow, 2011.
  Reviews the use of the most comprehensive reference compendium of bacterial proteomic responses to antibiotics.
   Freiberg, C., Brötz‐Oesterhelt, H., and Labischinski, H. 2004. The impact of transcriptome and proteome analyses on antibiotic drug discovery. Curr. Opin. Microbiol. 7:451‐459.
  Reviews proteome and transcriptome approaches to antibacterial drug discovery.
   Görg et al., 2004. See above.
  Provides an overview on 2‐D gel‐based proteomic technologies.
Internet Resources
  Provides an updated list of bacterial species with fully sequenced genomes.
  Provide proteome maps for several species.
  Source of proteomics tools.
PDF or HTML at Wiley Online Library