Extraction, Purification, and Identification of Yersiniabactin, the Siderophore of Yersinia pestis

M. Clarke Miller1, Edward DeMoll2

1 James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, 2 Department of Biology, University of Kentucky, Lexington, Kentucky
Publication Name:  Current Protocols in Microbiology
Unit Number:  Unit 5B.3
DOI:  10.1002/9780471729259.mc05b03s23
Online Posting Date:  November, 2011
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

This unit describes in detail the extraction, purification, and identification of Yersiniabactin the siderophore of Yersinia pestis. Iron is essential for bacterial growth. Although relatively abundant, access to iron is limited in nature by low solubility. This problem is exacerbated for pathogenic bacteria, which must also defeat the host organism's innate defenses, including mechanisms to sequester iron. One solution to these problems is production of water soluble, small molecules with high affinities for iron called siderophores. This protocol has been fine tuned for Yersiniabactin purification but may be easily modified for use in isolating other siderophores or similar molecules. Curr. Protoc. Microbiol. 23:5B.3.1‐5B.3.22. © 2011 by John Wiley & Sons, Inc.

Keywords: siderophore; iron; extraction; purification; Yersiniabactin; Yersinia pestis; plague

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Strategic Planning
  • Basic Protocol 1: Extraction, Purification, and Identification of Yersiniabactin
  • Support Protocol 1: Concentration of HPLC Fractions by Sep‐Pak Reversed‐Phase Cartridge
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Extraction, Purification, and Identification of Yersiniabactin

  Materials
  • Yersinia pestis KIM6+ (units 5.1& 5.2)
  • PMH2 medium (see recipe)
  • Ethyl acetate
  • Ethanol
  • Methanol
  • HPLC mobile phases:
    • Buffer A: water with 10% (v/v) acetonitrile, pH 8.0 (adjusted with NH 4OH)
    • Buffer B: water with 25% (v/v) acetonitrile, pH 8.0 (adjusted with NH 4OH)
    • Buffer C: acetonitrile (HPLC‐grade)
    • Buffer D: water (HPLC‐grade or 22‐µm filtered distilled deionized)
  • Acetonitrile
  • Centrifuge (e.g., Beckman‐Coulter Avanti J‐26 equipped with J‐10 or JLA‐10.500 rotor)
  • 500‐ml centrifuge bottles (e.g., Beckmann, cat. no. 355607)
  • 0.22‐µm bottle top filter (e.g., Corning bottle‐top filter system, part no. 341098)
  • Aluminum foil
  • 3‐ and 4‐liter separatory funnels
  • Ring (large enough to support separatory funnel) and ring stand
  • Rotary evaporator with water bath
  • Test tube clamp for ring stand
  • 5‐ or 10‐ml syringes
  • Sep‐Pak C18 cartridges (Waters, cat. no. WAT051910)
  • Syringe filters (0.22‐µm)
  • Centrivap concentrator or lyophilizer
  • HPLC system with:
    • Waters 600 pump and controller
    • Waters 2998 UV‐vis photodiode array detector
    • Waters 2702 auto‐sampler with 250‐µl sample loop
    • Waters fraction collector III (optional)
  • µRPC C2/C18 ST 4.6/100 column (GE Healthcare, cat. no. 17‐5057‐01)
  • 1.5‐ml microcentrifuge tubes (optional)
  • UV‐vis (optional)

Support Protocol 1: Concentration of HPLC Fractions by Sep‐Pak Reversed‐Phase Cartridge

  Materials
  • Methanol
  • HPLC‐purified Yersiniabactin fractions
  • Ring stand
  • Test tube clamp for ring stand
  • 5‐ and 10‐ml syringes
  • Sep‐Pak C18 cartridges (Waters, cat. no. WAT051910)
  • Aluminum foil
  • Centrivap concentrator or lyophilizer
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Abdul‐Tehrani, H., Hudson, A.J., Chang, Y.S., Timms, A.R., Hawkins, C., Williams, J.M., Harrison, P.M., Guest, J.R., and Andrews, S.C. 1999. Ferritin mutants of Escherichia coli are iron deficient and growth impaired, and fur mutants are iron deficient. J. Bacteriol. 181:1415‐1428.
   Admiraal, S.J., Walsh, C.T., and Khosla, C. 2001. The loading module of rifamycin synthetase is an adenylation‐thiolation didomain with substrate tolerance for substituted benzoates. Biochemistry 40:6116‐6123.
   Aisen, P., Leibman, A., and Zweier, J. 1978. Stoichiometric and site characteristics of binding of iron to human transferrin. J. Biol. Chem. 253:1930‐1937.
   Aisen, P., Enns, C., and Wessling‐Resnick, M. 2001. Chemistry and biology of eukaryotic iron metabolism. Intl. J. Biochem. Cell Biol. 33:940‐959.
   Andrews, S.C., Robinson, A.K., and Rodriguez‐Quinones, F. 2003. Bacterial iron homeostasis. FEMS Microbiol. Rev. 27:215‐237.
   Bagg, A. and Neilands, J.B. 1987. Ferric uptake regulation protein acts as a repressor, employing iron (II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli. Biochemistry 26:5471‐5477.
   Barry, D.M. and Reeve, A.W. 1977. Increased incidence of Gram‐negative neonatal sepsis with intramuscular iron administration. Pediatrics 60:908‐912.
   Bearden, S.W. and Perry, R.D. 1999. The Yfe system of Yersinia pestis transports iron and manganese and is required for full virulence of plague. Mol. Microbiol. 32:403‐414.
   Bearden, S.W., Fetherston, J.D., and Perry, R.D. 1997. Genetic organization of the Yersiniabactin biosynthetic region and construction of avirulent mutants in Yersinia pestis. Infect. Immun. 65:1659‐1668.
   Bergeron, R.J. and Brittenham, G.M. 1994. The Development of Iron Chelators for Clinical Use. CRC Press, Boca Raton, Fla.
   Boukhalfa, H. and Crumbliss, A.L. 2002. Chemical aspects of siderophore mediated iron transport. Biometals 15:325‐339.
   Braun, V. and Killmann, H. 1999. Bacterial solutions to the iron supply problem. Trends Biochem. Sci. 24:104‐109.
   Buchanan, S.K., Smith, B.S., Venkatramani, L., Xia, D., Esser, L., Palnitkar, M., Chakraborty, R., van der Helm, D., and Deisenhofer, J. 1999. Crystal structure of the outer membrane active transporter FepA from Escherichia coli. Nat. Struct. Biol. 6:56‐63.
   Bullen, J.J. and Griffiths, E. 1999. Iron and infection: Molecular, physiological and clinical aspects. John Wiley & Sons, New York.
   Bullen, J.J., Leigh, L.C., and Rogers, H.J. 1968. The effect of iron compounds on the virulence of Escherichia coli for guinea‐pigs. Immunology 15:581‐588.
   Bullen, J.J., Rogers, H.J., and Lewin, J.E. 1971. Bacteriostatic effect of serum on Pasteurella septica and its abolition by iron compounds. Immunology 20:391‐406.
   Bullen, J.J., Ward, C.G., and Rogers, H.J. 1991. The critical role of iron in some clinical infections. Eur. J. Clin. Microbiol. Infect. Dis. 10:613‐617.
   Buyer, J.S. and Leong, J. 1986. Iron transport‐mediated antagonism between plant growth‐promoting and plant‐deleterious Pseudomonas strains. J. Biol. Chem. 261:791‐794.
   Carniel, E. and Hinnebusch, B.J. 2004. Yersinia: Molecular and Cellular Biology. Horizon Bioscience, Wymondham, Norfolk, U.K.
   Chambers, C.E., McIntyre, D.D., Mouck, M., and Sokol, P.A. 1996. Physical and structural characterization of yersiniophore, a siderophore produced by clinical isolates of Yersinia entercolitica. Biometals 9:157‐167.
   Chart, H. and Griffiths, E. 1985. The availability of iron and the growth of Vibrio vulnificus in sera from patients with hemochromatosis. FEMS Microbiol. Lett. 26:227‐231.
   Chen, H.W., O'Connor, S., Cane, D.E., and Walsh, C.T. 2001. Epothilone biosynthesis: Assembly of the methylthiazolylcarboxy starter unit on the EpoB subunit. Chem. Biol. 8:899‐912.
   Coy, M. and Neilands, J.B. 1991. Structural dynamics and functional domains of the fur protein. Biochemistry 30:8201‐8210.
   Crosa, J.H. and Walsh, C.T. 2002. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol. Mol. Biol. Rev. 66:223‐249.
   Crosa, J.H., Mey, A.R., and Payne, S.M. 2004. Iron Transport in Bacteria. ASM Press, Washington, D.C.
   Dhungana, S. and Crumbliss, A.L. 2005. Coordination chemistry and redox processes in siderophore‐mediated iron transport. Geomicrobiol. J. 22:87‐98.
   Ernst, J.F., Bennett, R.L., and Rothfield, L.I. 1978. Constitutive expression of iron‐enterochelin and ferrichrome uptake systems in a mutant strain of Salmonella typhimurium. J. Bacteriol. 135:928‐934.
   Escolar, L., Perez‐Martin, J., and de Lorenzo, V. 1999. Opening the iron box: Transcriptional metalloregulation by the Fur protein. J. Bacteriol. 181:6223‐6229.
   Ferguson, A.D., Hofmann, E., Coulton, J.W., Diederichs, K., and Welte, W. 1998. Siderophore‐mediated iron transport: Crystal structure of FhuA with bound lipopolysaccharide. Science 282:2215‐2220.
   Ferguson, A.D., Chakraborty, R., Smith, B.S., Esser, L., van der Helm, D., and Deisenhofer, J. 2002. Structural basis of gating by the outer membrane transporter FecA. Science 295:1715‐1719.
   Fetherston, J.D., Bertolino, V.J., and Perry, R.D. 1999. YbtP and YbtQ: Two ABC transporters required for iron uptake in Yersinia pestis. Mol. Microbiol. 32:289‐299.
   Galimand, M., Guiyoule, A., Gerbaud, G., Rasoamanana, B., Chanteau, S., Carniel, E., and Courvalin, P. 1997. Multidrug resistance in Yersinia pestis mediated by a transferable plasmid. New Engl. J. Med. 337:677‐680.
   Gehring, A.M., DeMoll, E., Fetherston, J.D., Mori, I., Mayhew, G.F., Blattner, F.R., Walsh, C.T., and Perry, R.D. 1998. Iron acquisition in plague: Modular logic in enzymatic biogenesis of Yersiniabactin by Yersinia pestis. Chem. Biol. 5:573‐586.
   Gong, S.M., Bearden, S.W., Geoffroy, V.A., Fetherston, J.D., and Perry, R.D. 2001. Characterization of the Yersinia pestis Yfu ABC inorganic iron transport system. Infect. Immun. 69:2829‐2837.
   Griffiths, E. 1991. Iron and bacterial virulence—A brief overview. Biol. Metals 4:7‐13.
   Guerinot, M.L. 1994. Microbial iron transport. Annu. Rev. Microbiol. 48:743‐772.
   Haas, D. and Keel, C. 2003. Regulation of antibiotic production in root‐colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu. Rev. Phytopathol. 41:117‐153.
   Hantke, K. 1984. Cloning of the repressor protein gene of iron‐regulated systems in Escherichia coli‐K12. Mol. General Genet. 197:337‐341.
   Heidinger, S., Braun, V., Pecoraro, V.L., and Raymond, K.N. 1983. Iron supply to Escherichia coli by synthetic analogs of enterochelin. J. Bacteriol. 153:109‐115.
   Higgs, P.I., Myers, P.S., and Postle, K. 1998. Interactions in the TonB‐dependent energy transduction complex: ExbB and ExbD form homomultimers. J. Bacteriol. 180:6031‐6038.
   Inglesby, T.V., Dennis, D.T., Henderson, D.A., Bartlett, J.G., Ascher, M.S., Eitzen, E., Fine, A.D., Friedlander, A.M., Hauer, J., Koerner, J.F., Layton, M., McDade, J., Osterholm, M.T., O'Toole, T., Parker, G., Perl, T.M., Russell, P.K., Schoch‐Spana, M., Tonat, K., and Working Group on Civilian Biodefense. 2000a. Plague as a biological weapon—Medical and public health management. JAMA 283:2281‐2290.
   Inglesby, T.V., O'Toole, T., and Henderson, D.A. 2000b. Preventing the use of biological weapons: Improving response should prevention fail. Clin. Infect. Dis. 30:926‐929.
   Kretchmar, S.A., Reyes, Z.E., and Raymond, K.N. 1988. The spectroelectrochemical determination of the reduction potential of diferric serum transferrin. Biochim. Biophys. Acta 956:85‐94.
   Larsen, R.A., Thomas, M.G., Wood, G.E., and Postle, K. 1994. Partial suppression of an Escherichia coli TonB transmembrane domain mutation (delta V17) by a missense mutation in ExbB. Mol. Microbiol. 13:627‐640.
   Lesic, B. and Carniel, E. 2005. Horizontal transfer of the high‐pathogenicity island of Yersinia pseudotuberculosis. J. Bacteriol. 187:3352‐3358.
   Martin, R.B., Savory, J., Brown, S., Bertholf, R.L., and Wills, M.R. 1987. Transferrin binding of Al‐3+ and Fe‐3+. Clin. Chem. 33:405‐407.
   Martinez, J.L., Delgado‐Iribarren, A., and Baquero, F. 1990. Mechanisms of iron acquisition and bacterial virulence. FEMS Microbiol. Rev. 6:45‐56.
   May, J.J., Kessler, N., Marahiel, M.A., and Stubbs, M.T. 2002. Crystal structure of DhbE, an archetype for aryl acid activating domains of modular nonribosomal peptide synthetases. Proc. Natl. Acad. Sci. U.S.A. 99:12120‐12125.
   Miethke, M., Bisseret, P., Beckering, C.L., Vignard, D., Eustache, J., and Marahiel, M.A. 2006. Inhibition of aryl acid adenylation domains involved in bacterial siderophore synthesis. FEBS J. 273:409‐419.
   Miller, M.C., Parkin, S., Fetherston, J.D., Perry, R.D., and DeMoll, E. 2006. Crystal structure of ferric‐Yersiniabactin, a virulence factor of Yersinia pestis. J. Inorg. Biochem. 100:1495‐1500.
   Miller, M.C., Fetherston, J.D., Pickett, C.L., Bobrov, A.G., Weaver, R.H., DeMoll, E., and Perry, R.D. 2010. Reduced synthesis of the Ybt siderophore or production of aberrant Ybt‐like molecules activates transcription of Yersiniabactin genes in Yersinia pestis. Microbiology 156:2226‐2238.
   Neidhardt, F.C. and Curtiss, R. 1996. Escherichia coli and Salmonella: Cellular and Molecular Biology. ASM Press, Washington, D.C.
   Payne, S.M. 1989. Iron and virulence in Shigella. Mol. Microbiol. 3:1301‐1306.
   Perry, R.D. and Fetherston, J.D. 1997. Yersinia pestis—Etiologic agent of plague. Clin. Microbiol. Rev. 10:35‐66.
   Perry, R.D. and Fetherston, J.D. 2004. Yersinia: Molecular and Cellular Biology. Horizon Bioscience, Wymondham, Norfolk, U.K.
   Robins‐Browne, R.M. and Prpic, J.K. 1985. Effects of iron and desferrioxamine on infections with Yersinia enterocolitica. Infect. Immun. 47:774‐779.
   Robins‐Browne, R.M., Prpic, J.K., and Stuart, S.J. 1987. Yersiniae and iron. A study in host‐parasite relationships. Contrib. Microbiol. Immunol. 9:254‐258.
   Rouf, M.A. 1964. Spectrochemical analysis of inorganic elements in bacteria. J. Bacteriol. 88:1545‐1549.
   Sigel, A. and Sigel, H. 1998. Iron transport and storage in microorganisms, plants, and animals. Marcel Dekker, New York.
   Smith, A., Hooper, N.I., Shipulina, N., and Morgan, W.T. 1996. Heme binding by a bacterial repressor protein, the gene product of the ferric uptake regulation (fur) gene of Escherichia coli. J. Protein Chem. 15:575‐583.
   Somu, R.V., Boshoff, H., Qiao, C.H., Bennett, E.M., Barry, C.E., and Aldrich, C.C. 2006. Rationally designed nucleoside antibiotics that inhibit siderophore biosynthesis of Mycobacterium tuberculosis. J. Med. Chem. 49:31‐34.
   Stojiljkovic, I. and Hantke, K. 1995. Functional domains of the Escherichia coli ferric uptake regulator protein (Fur). Mol. General Genet. 247:199‐205.
   Trousseau, A., Bazire, P.V., and Cormack, J.R. 1867. Lectures on Clinical Medicine. R. Hardwicke, London.
   Venuti, M.C., Rastetter, W.H., and Neilands, J.B. 1979. 1,3,5‐Tris(N,N′,N″‐2,3‐dihydroxybenzoyl)amino‐methylbenzene, a synthetic iron chelator related to enterobactin. J. Med. Chem. 22:123‐124.
   Walsh, C.T. 2002. Combinatorial biosynthesis of antibiotics: Challenges and opportunities. Chembiochem 3:125‐134.
   Ward, C.G., Hammond, J.S., and Bullen, J.J. 1986. Effect of iron compounds on antibacterial function of human polymorphs and plasma. Infect. Immun. 51:723‐730.
   Watanabe, N.A., Nagasu, T., Katsu, K., and Kitoh, K. 1987. E‐0702, a new cephalosporin, is incorporated into Escherichia coli cells via the tonB‐dependent iron transport system. Antimicrob. Agents Chemother. 31:497‐504.
   Winkelmann, G. 2002. Microbial siderophore‐mediated iron transport. Biochem. Soc. Transactions 30:691‐696.
   Wright, A.C., Simpson, L.M., and Oliver, J.D. 1981. Role of iron in the pathogenesis of Vibrio vulnificus infections. Infect. Immun. 34:503‐507.
   Zimmermann, L., Hantke, K., and Braun, V. 1984. Exogenous induction of the iron dicitrate transport‐system of Escherichia coli K‐12. J. Bacteriol. 159:271‐277.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library