Genetic Manipulation of Stenotrophomonas maltophilia

Elliott Welker1, Yayra Domfeh1, Deepti Tyagi1, Sanjivni Sinha1, Nathan Fisher1

1 North Dakota State University, Department of Veterinary and Microbiological Sciences, Fargo, North Dakota
Publication Name:  Current Protocols in Microbiology
Unit Number:  Unit 6F.2
DOI:  10.1002/9780471729259.mc06f02s37
Online Posting Date:  May, 2015
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Stenotrophomonas maltophilia is a Gram‐negative, aerobic, motile, environmental bacterium that is emerging as an important nosocomial pathogen with high rates of attributable mortality in severely ill patients. S. maltophilia is of particular concern to patients suffering from cystic fibrosis (CF) as it has been shown to colonize airway epithelial and establish a chronic infection. Here we describe several molecular techniques for the genetic manipulation of this bacterium, including DNA extraction, RNA extraction, conjugation of plasmids from Escherichia coli and allelic exchange. © 2015 by John Wiley & Sons, Inc.

Keywords: Stenotrophomonas maltophilia; genetic manipulation; nosocomial; hospital acquired infection

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Strategic Planning
  • Basic Protocol 1: Isolation of S. maltophilia Genomic DNA
  • Alternate Protocol 1: Quick Extraction of S. maltophilia DNA for PCR
  • Basic Protocol 2: Extraction of S. maltophilia RNA
  • Basic Protocol 3: Transfer of Plasmid DNA to S. maltophilia Recipient from E. coli Donor
  • Basic Protocol 4: Allelic Exchange in S. maltophilia Using pEX18Tc
  • Reagents and Solutions
  • Commentary
  • Literature Cited
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Isolation of S. maltophilia Genomic DNA

  Materials
  • Viable S. maltophilia on a Petri plate (see unit 6.1, Mahdi et al., )
  • Luria‐Bertani (LB) broth ( appendix 4A)
  • 0.1× SSC (see recipe)
  • 50 mg/ml stock lysozyme solution (see recipe)
  • 20 mg/ml stock proteinase K solution (see recipe)
  • Tris‐saturated phenol (pH 7.5; molecular biology grade)
  • Chloroform (molecular biology grade)
  • 70% ethanol in nuclease‐free double‐distilled water (ddH 2O), ice‐cold (see recipe)
  • Absolute ethanol (≥99.8%), ice‐cold
  • Buffer 1 (see recipe)
  • Lysis buffer (see recipe)
  • TE buffer, pH 8.0 ( appendix 2A)
  • 5 M sodium chloride (NaCl) solution (see recipe)
  • Microcentrifuge tubes, nuclease free
  • Orbital shaker set to 37°C, 225 rpm
  • Inoculating loop or needle, sterile
  • 15‐ and 50‐ml conical tubes, sterile
  • 100‐ml culture flask, sterile

Alternate Protocol 1: Quick Extraction of S. maltophilia DNA for PCR

  Materials
  • Viable S. maltophilia on a Petri plate (see unit 6.1; Mahdi et al., ).
  • TE buffer, pH 8.0 ( appendix 2A)
  • Inoculating loop or needle, sterile
  • Sterile 200‐μl PCR tubes
  • Microcentrifuge fitted with 200‐μl tube adapter
  • Two water baths, set to 55°C and 80°C, or a thermocycler

Basic Protocol 2: Extraction of S. maltophilia RNA

  Materials
  • Viable S. maltophilia on a Petri plate (see unit 6.1; Mahdi et al., )
  • Luria‐Bertani (LB) broth ( appendix 4A)
  • Acid phenol:chloroform (pH 4.3 to 4.7)
  • Chloroform
  • Double‐distilled water (ddH 2O), nuclease free
  • 70% ethanol in nuclease‐free ddH 2O, ice‐cold (see recipe)
  • Absolute ethanol (≥99.8%), ice‐cold
  • Isoamyl alcohol
  • RNasin Plus RNase Inhibitor (Promega)
  • 0.1 M dithiothreitol (DTT)
  • RQ1 RNase‐Free DNase
  • 10× RQ1 RNase‐Free DNase buffer
  • Sample buffer (see recipe)
  • Stop solution (see recipe)
  • 3 M sodium acetate, pH 5.2 (see recipe)
  • 20% sodium dodecyl sulfate (SDS; see recipe)
  • TE buffer, pH 8.0 ( appendix 2A)
  • 0.1‐mm zirconium beads, acid‐washed (see recipe)
  • 15‐ and 50‐ml conical tube, sterile
  • Beadbeater (Biospec Products)
  • Microcentrifuge tubes, sterile
  • Swinging bucket centrifuge, pre‐chilled to 4°C
  • Orbital shaker set to 37°C, 225 rpm
  • 8‐ml bead‐beating tubes
  • Water bath set to 65°C
  • Ice bath

Basic Protocol 3: Transfer of Plasmid DNA to S. maltophilia Recipient from E. coli Donor

  Materials
  • Viable S. maltophilia on a Petri plate (recipient; unit 6.1, Mahdi et al., )
  • Viable E. coli on a Petri plate (donor)
  • Broad‐host range shuttle vector
  • LB broth ( appendix 4A)
  • LB agar plates, dry ( appendix 4A)
  • Primers SM1 and SM2 (see recipe)
  • 15‐ml centrifuge tube, sterile
  • Orbital shaker set to 37°C, 225 rpm
  • Inoculating loop or needle, sterile

Basic Protocol 4: Allelic Exchange in S. maltophilia Using pEX18Tc

  Materials
  • pEX18Tc (gift from Dr. H. P. Schweizer, Colorado State University; Hoang et al., )
  • LB broth ( appendix 4A)
  • LB agar ( appendix 4A)
  • Sucrose
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Albini, S., Abril, C., Franchini, M., Hussy, D., and Filioussis, G. 2009. Stenotrophomonas maltophilia isolated form the airways of animals with chronic respiratory disease. Schweiz. Arch. Tierheilkd. 151:323‐328.
  Berg, G., Marten, P., and Ballin, G. 1996. Stenotrophomonas maltophilia in the rhizosphere of oilseed rape‐occurrence, characterization and interaction with phytopathogenic fungi. Microbiol. Res. 151:19‐27.
  Brooke, J.S. 2012. Stenotrophomonas maltophilia: An emerging global opportunistic pathogen. Clin. Microbiol. Rev. 25:2‐41.
  Chen, S., Yang, L., Hu, M., and Liu, J. 2011. Biodegradation of fenvalerate and 3‐phenoxybenzoic acid by a novel Stenotrophomonas sp. strain ZS‐S‐01 and its use in bioremediation of contaminated soils. Appl. Microbiol. Biotechnol. 90:755‐767.
  Coenye, T., Vanlaere, E., Falsen, E., and Vandamme, P. 2004. Stenotrophomonas africana Drancourt et al. 1997 is a later synonym of Stenotrophomonas maltophilia (Hugh 1981) Palleroni and Bradbury 1993. Int. J. Syst. Evol. Microbiol. 54:1235‐1237.
  Corsaro, D., Muller, K., and Michel, R. 2013. Molecular characterization and ultrastructure of a new amoeba endoparasite belonging to the Stenotrophomonas maltophilia complex. Exp. Parasitol. 133:383‐390.
  Crossman, L.C., Gould, V.C., Dow, J.M., Vernikos, G.S., Okazaki, A., Sebaihia, M., Saunders, D., Arrowsmith, C., Carver, T., Peters, N., Adlem, E., Kerhornou, A., Lord, A., Murphy, L., Seeger, K., Squares, R., Rutter, S., Quail, M.A., Rajandream, M.A., Harris, D., Churcher, C., Bentley, S.D., Parkhill, J., Thomson, N.R., and Avison, M.B. 2008. The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. Genome Biol. 9:R74.
  Burnett, L.C., Lunn, G. and Coico, R. 2009. Biosafety: guidelines for working with pathogenic and infectious microorganisms. Curr. Protoc. Microbiol. 13:1A.1.1‐1A.1.14.
  Di Gregorio, S., Lampis, S., and Vallini, G. 2005. Selenite precipitation by a rhizospheric strain of Stenotrophomonas sp. isolated from the root system of Astragalus bisulcatus: a biotechnological perspective. Environ. Int. 31:233‐241.
  Falagas, M., Kastoris, A., Vouloumanou, E., Rafailidis, P., Kapaskelis, A., and Dimopoulos, G. 2009. Attributable mortality of Stenotrophomonas maltophilia infections: A systemic review of the literature. Future Microbiol. 4:1102‐1109.
  Flamm, R.K., Hinrichs, D.J., and Thomashow, M.F. 1984. Introduction of pAM31 into Listeria monocytogenes by conjugation and homology between native L. monocytogenes plasmids. Am. Soc. Microbiol. 44:157‐161.
  Furushita, M., Okamoto, A., Maeda, T., Ohta, M., and Shiba, T. 2005. Isolation of multidrug‐resistant Stenotrophomonas maltophilia from cultured yellowtail (Seriola quinqueradiata) from a marine fish farm. Appl. Environ. Microbiol. 71:5598‐5600.
  Garbeva, P., van Overbeek, L., van Vuurde, J., and van Elsas, J. 2001. Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microb. Ecol. 41:369‐383.
  Gaynes, R. and Edwards, J.R. 2005. Overview of nosocomial infections caused by gram‐negative bacilli. Clin. Infect. Dis. 41:848‐854.
  Goncalves‐Vidigal, P., Grosse‐Onnebrink, J., Mellies, U., Buer, J., Rath, P.‐M., and Steinmann, J. 2011. Stenotrophomonas maltophilia in cystic fibrosis: Improved detection by the use of selective agar and evaluation of antimicrobial resistance. J. Cyst. Fibros. 10:422‐427.
  Harris, N. and Rodgers, D. 2001. Septicemia associated with Stenotrophomonas maltophilia in a West African dwarf crocodile (Osteolaemus tetraspis subsp. tetraspis). J. Vet. Diagn. Invest. 13:255‐258.
  Hoang, T.T., Karkhoff‐Schweizer, R.R., Kutchma, A.J., and Schweizer, H.P. 1998. A broad‐host‐range Flp‐FRT recombination system for site‐specific excision of chromosomally‐located DNA sequences: Application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77‐86.
  Jones, R.N. 2010. Microbial etiologies of hospital‐acquired bacterial pneumonia and ventilator‐associated bacterial pneumonia. Clin. Infect. Dis. 51:S81‐S87.
  Karaba, S.M., White, R.C., and Cianciotto, N.P. 2013. Stenotrophomonas maltophilia encodes a type II protein secretion system that promotes detrimental effects on lung epithelial cells. Infect. Immun. 81:3210‐3219.
  Kim, T., Chong, Y.P., Park, S.Y., Jeon, M.‐H., Choo, E.J., Chung, J.‐W., Lee, H.K., Moon, C., Kim, D.M., Peck, K.R., and Kim, Y.S. 2014. Risk factors for hospital‐acquired pneumonia caused by carbapenem‐resistant Gram‐negative bacteria in critically ill patients: A multicenter study in Korea. Diagn. Microbiol. Infect. Dis. 78:457‐461.
  Kralova‐Kovarikova, S., Husnik, R., Honzak, D., Kohout, P., and Fictum, P. 2012. Stenotrophomonas maltophilia urinary tract infections in three dogs: A case report. Probl. Vet. Med. 57 380‐383.
  Looney, W.J., Narita, M., and Mühlemann, K. 2009. Stenotrophomonas maltophilia: An emerging opportunist human pathogen. Lancet Infect. Dis. 9:312‐323.
  Mahdi, O., Eklund, B. and Fisher, N. 2014. Laboratory culture and maintenance of Stenotrophomonas maltophilia. Curr. Protoc. Microbiol. 32:6F.1.1‐6F.1.6.
  Paez, J.I.G. and Costa, S.F. 2008. Risk factors associated with mortality of infections caused by Stenotrophomonas maltophilia: A systematic review. J. Hosp. Infect. 70:101‐108.
  Pallen, M.J. and Wren, B.W. 2007. Bacterial pathogenomics. Nature 449:835‐842.
  Palleroni, N.J. and Bradbury, J.F. 1993. Stenotrophomonas, a new bacterial genus for Xanthornonas maltophilia (Hugh 1980) Swing et al. 1983. Int. J. Syst. Bacteriol. 43:606‐609.
  Pathmanathan, A. and Waterer, G.W. 2005. Significance of positive Stenotrophomonas maltophilia culture in acute respiratory tract infection. Eur. Respir. J. 25:911‐914.
  Petridou, E., Filioussis, G., Karavanis, E., and Kritas, S.K. 2010. Stenotrophomonas maltophilia as a causal agent of Pyogranulomatous hepatitis in a buffalo (Bubalus bubalis). J. Vet. Diagn. Invest. 22:772‐774.
  Pompilio, A., Crocetta, V., Confalone, P., Nicoletti, M., Petrucca, A., Guarnieri, S., Fiscarelli, E., Savini, V., and Di Bonaventura, G. 2010. Adhesion to and biofilm formation on IB3‐1 bronchial cells by Stenotrophomonas maltophilia isolates from cystic fibrosis patients. BMC Microbiol. 10:102.
  Rocco, F., De Gregorio, E., Colonna, B., and Di Nocera, P.P. 2009. Stenotrophomonas maltophilia genomes: A start‐up comparison. Int. J. Med. Microbiol. 299:535‐546.
  Sattler, C.A., Mason, E.O., and Kaplan, S.L. 2000. Nonrespiratory Stenotrophomonas maltophilia infection at a children's hospital. Clin. Infect. Dis. 31:1321‐1330.
  Schell, M.A., Ulrich, R.L., Ribot, W.J., Brueggemann, E.E., Hines, H.B., Chen, D., Lipscomb, L., Kim, H.S., Mrázek, J., Nierman, W.C., and DeShazer, D. 2007. Type VI secretion is a major virulence determinant in Burkholderia mallei. Mol. Microbiol. 64:1466‐1485.
  Senol, E., DesJardin, J., Stark, P.C., Barefoot, L., and Snydman, D.R. 2002. Attributable mortality of Stenotrophomonas maltophilia bacteremia. Clin. Infect. Dis. 34:1653‐1656.
  Simon, R., Priefer, U., and Puhler, A. 1983. A broad host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in gram‐negative bacteria. Nat. Biotechnol. 1:784‐791.
  Stanojevic, S., Ratjen, F., Stephens, D., Lu, A., Yau, Y., Tullis, E., and Waters, V. 2013. Factors influencing the acquisition of Stenotrophomonas maltophilia infection in cystic fibrosis patients. J. Cyst. Fibros. 12:575‐583.
  Timsit, J.‐F., Zahar, J.‐R., and Chevret, S. 2011. Attributable mortality of ventilator‐associated pneumonia. Curr. Opin. Crit. Care 17:464‐471.
  Weber, D.J., Rutala, W.A., Sickbert‐Bennett, E.E., Samsa, G.P., Brown, V., and Niederman, M.S. 2007. Microbiology of ventilator‐associated pneumonia compared with that of hospital‐acquired pneumonia. Infect. Control Hosp. Epidemiol. 28:825‐831.
  Whitby, P.W., Carter, K.B., Burns, J.L., Royall, J.A., LiPuma, J.J., and Stull, T.L. 2000. Identification and detection of Stenotrophomonas maltophilia by rRNA‐directed PCR. J. Clin. Microbiol. 38:4305‐4309.
  Winther, L., Andersen, R.M., Baptiste, K.E., Aalbæk, B., and Guardabassi, L. 2010. Association of Stenotrophomonas maltophilia infection with lower airway disease in the horse: A retrospective case series. Vet. J. 186:358‐363.
  Zhu, Y., Shi, F., Tian, J., Liu, J., Chen, S., Xiang, M., and Liu, X. 2013. Effect of soybean monoculture on the bacterial communities associated with cysts of Heterodera glycines. J. Nematol. 45:228‐235.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library