Laboratory Maintenance of Methicillin‐Resistant Staphylococcus aureus (MRSA)

Nicholas P. Vitko1, Anthony R. Richardson1

1 Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina
Publication Name:  Current Protocols in Microbiology
Unit Number:  Unit 9C.2
DOI:  10.1002/9780471729259.mc09c02s28
Online Posting Date:  February, 2013
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Staphylococcus aureus is an important bacterial pathogen in the hospital and community settings, especially Staphylococcus aureus clones that exhibit methicillin‐resistance (MRSA). Many strains of S. aureus are utilized in the laboratory, underscoring the genetic differences inherent in clinical isolates. S. aureus grows quickly at 37°C with aeration in rich media (e.g., BHI) and exhibits a preference for glycolytic carbon sources. Furthermore, S. aureus has a gold pigmentation, exhibits β‐hemolysis, and is catalase and coagulase positive. The four basic laboratory protocols presented in this unit describe how to culture S. aureus on liquid and solid media, how to identify S. aureus strains as methicillin resistant, and how to generate a freezer stock of S. aureus for long‐term storage. Curr. Protoc. Microbiol. 28:9C.2.1‐9C.2.14. © 2013 by John Wiley & Sons, Inc.

Keywords: Staphylococcus aureus; HA‐MRSA; CA‐MRSA; growth; strain selection; CDM; freezer stock

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Strategic Planning
  • Basic Protocol 1: Growth of S. aureus on Solid Media
  • Basic Protocol 2: Testing S. aureus for Methicillin Resistance
  • Basic Protocol 3: Growth of S. aureus in Liquid Media
  • Basic Protocol 4: Preparation of S. aureus Frozen Stocks
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Growth of S. aureus on Solid Media

  Materials
  • S. aureus frozen stock ( protocol 3)
  • BHI agar plates (see recipe)
  • Sterile wooden applicators
  • 37°C incubator

Basic Protocol 2: Testing S. aureus for Methicillin Resistance

  Materials
  • S. aureus streak plate (see protocol 1)
  • Phosphate‐buffered saline (PBS; see recipe)
  • 0.5 McFarland standard
  • Mueller‐Hinton agar (MHA) plates supplemented with 2% NaCl and oxacillin (2 and 4 µg/ml) (see recipe)
  • 1.5‐ml microcentrifuge tubes, sterile
  • Inoculating loops, sterile
  • Vortex mixer
  • Spectrophotometer
  • Plastic cuvettes
  • 35°C incubator

Basic Protocol 3: Growth of S. aureus in Liquid Media

  Materials
  • BHI broth (see recipe)
  • Streak plate of S. aureus (see protocol 1)
  • Inoculating loops, sterile
  • 15‐ to 20‐ml culture tubes (with caps), sterile
  • 37°C shaking incubator

Basic Protocol 4: Preparation of S. aureus Frozen Stocks

  Materials
  • Dimethyl sulfoxide (DMSO; see recipe), sterile
  • Overnight culture of S. aureus (see protocol 3)
  • 2‐ml cryotubes, sterile
  • Vortex mixer
  • −80°C freezer
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Adhikari, R.P. and Novick, R.P. 2008. Regulatory organization of the staphylococcal sae locus. Microbiology 154:949‐959.
   Araj, G.F., Talhouk, R.S., Simaan, C.J., and Maasad, M.J. 1999. Discrepancies between mec A PCR and conventional tests used for detection of methicillin resistant Staphylococcus aureus. Int. J. Antimicrob. Agents 11:47‐52.
   Baba, T., Takeuchi, F., Kuroda, M., Yuzawa, H., Aoki, K.‐I., Oguchi, A., Nagai, Y., Iwama, N., Asano, K., Naimi, T., Kuroda, H, Cui, L, Yamamoto, K, and Hiramatsu, K. 2002. Genome and virulence determinants of high virulence community‐acquired MRSA. Lancet 359:1819‐1827.
   Bae, T., Baba, T., Hiramatsu, K., and Schneewind, O. 2006. Prophages of Staphylococcus aureus Newman and their contribution to virulence. Mol. Microbiol. 62:1035‐1047.
   Bignardi, G.E., Woodford, N., Chapman, A., Johnson, A.P., and Speller, D. 1996. Detection of the mec‐A gene and phenotypic detection of resistance in Staphylococcus aureus isolates with borderline or low‐level methicillin resistance. J. Antimicrob. Chemother. 37:53‐63.
   Cassat, J. 2006. Transcriptional profiling of a Staphylococcus aureus clinical isolate and its isogenic agr and sarA mutants reveals global differences in comparison to the laboratory strain RN6390. Microbiology 152:3075‐3090.
   Charlebois, E.D., Bangsberg, D.R., Moss, N.J., Moore, M.R., Moss, A.R., Chambers, H.F., and Perdreau‐Remington, F. 2002. Population‐based community prevalence of methicillin‐resistant Staphylococcus aureus in the urban poor of San Francisco. Clin. Infect. Dis. 34:425‐433.
   Climo, M.W. 2009. Decreasing MRSA infections: An end met by unclear means. JAMA 301:772‐773.
   Diep, B.A., Gill, S.R., Chang, R.F., Phan, T.H., Chen, J.H., Davidson, M.G., Lin, F., Lin, J., Carleton, H.A., Mongodin, E.F., Sensabaugh, G.F., and Perdreau‐Remington, F. 2006. Complete genome sequence of USA300, an epidemic clone of community‐acquired meticillin‐resistant Staphylococcus aureus. Lancet 367:731‐739.
   Dinges, M.M., Orwin, P.M., and Schlievert, P.M. 2000. Exotoxins of Staphylococcus aureus. Clin. Microbiol. Rev. 13:16‐34.
   Duthie, E.S. and Lorenz, L.L. 1952. Staphylococcal coagulase; Mode of action and antigenicity. J. Gen. Microbiol. 6:95‐107.
   Dyke, K. 1969. Penicillinase production and intrinsic resistance to penicillins in methicillin‐resistant cultures of Staphylococcus aureus. J. Med. Microbiol. 2:261‐278.
   Emmett, M. and Kloos, W.E. 1979. The nature of arginine auxotrophy in cutaneous populations of staphylococci. J. Gen. Microbiol. 110:305‐314.
   Enright, M.C., Day, N.P., Davies, C.E., Peacock, S.J., and Spratt, B.G. 2000. Multilocus sequence typing for characterization of methicillin‐resistant and methicillin‐susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 38:1008‐1015.
   Foster, T.J. 2005. Immune evasion by staphylococci. Nat. Rev. Microbiol. 3:948‐958.
   Foster, T.J. and Höök, M. 1998. Surface protein adhesins of Staphylococcus aureus. Trends Microbiol. 6:484‐488. Available at: http://ac.els‐cdn.com/S0966842X98014000/1‐s2.0‐S0966842X98014000‐main.pdf?_tid=b5b27a903951069fdf4d8b989a649ca9&acdnat=1342717155_1dddd7a81cba19ba70448214d62dd903.
   Gonzalez, B.E. 2005. Severe staphylococcal sepsis in adolescents in the era of community‐acquired methicillin‐resistant Staphylococcus aureus. Pediatrics 115:642‐648.
   Grundmeier, M., Hussain, M., Becker, P., Heilmann, C., Peters, G., and Sinha, B. 2004. Truncation of fibronectin‐binding proteins in Staphylococcus aureus strain Newman leads to deficient adherence and host cell invasion due to loss of the cell wall anchor function. Infect. Immun. 72:7155‐7163.
   Herbert, S., Ziebandt, A.K., Ohlsen, K., Schäfer, T., Hecker, M., Albrecht, D., Novick, R., and Gotz, F. 2010. Repair of global regulators in Staphylococcus aureus 8325 and comparative analysis with other clinical isolates. Infect. Immun. 78:2877‐2889.
   Hiramatsu, K., Hanaki, H., Ino, T., Yabuta, K., Oguri, T., and Tenover, F.C. 1997. Methicillin‐resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J. Antimicrob. Chemother. 40:135‐136.
   Holden, M.T.G., Feil, E.J., Lindsay, J.A., Peacock, S.J., Day, N.P.J., Enright, M.C., Foster, T.J., Moore, C.E., Hurst, L., Atkin, R., Barron, A., Bason, N., Bentley, S.D., Chillingworth, C., Chillingworth, T., Churcher, C., Clark, L., Corton, C., Cronin, A., Doggett, J., Dowd, L., Feltwell, T., Hance, Z., Harris, B., Hauser, H., Holroyd, S., Jagels, K., James, K.D., Lennard, N., Line, A., Mayes, R., Moule, S., Mungall, K., Ormond, D., Quail, M.A., Rabbinowitsch, E., Rutherford, K., Sanders, M., Sharp, S., Simmonds, M., Stevens, K., Whitehead, S., Barrell, B.G., Spratt, B.G., and Parkhill, J. 2004. Complete genomes of two clinical Staphylococcus aureus strains: Evidence for the rapid evolution of virulence and drug resistance. Proc. Natl. Acad. Sci. U.S.A. 101:9786‐9791.
   Horsburgh, M.J., Aish, J.L., White, I.J., Shaw, L., Lithgow, J.K., and Foster, S.J. 2002. B modulates virulence determinant expression and stress resistance: Characterization of a functional rsbU strain derived from Staphylococcus aureus 8325‐4. J. Bacteriol. 184:5457‐5467.
   Hultén, K.G., Kaplan, S.L., Lamberth, L.B., Slimp, K., Hammerman, W.A., Carrillo Marquez, M., Starke, J.R., Versalovic, J., and Mason, E.O. Jr. 2010. Hospital‐acquired Staphylococcus aureus infections at Texas Children's Hospital, 2001‐2007. Infect. Control Hospital Epidemiol. 31:183‐190.
   International Working Group on the Classification of Staphylococcal Cassette Chromosome Elements (IWG‐SCC) 2009. Classification of staphylococcal cassette chromosome mec (SCCmec): Guidelines for reporting novel SCCmec elements. Antimicrob. Agents Chemother. 53:4961‐4967.
   Jenkins, T.C., McCollister, B.D., Sharma, R., McFann, K.K., Madinger, N E., Barron, M., Bessesen, M., Price, C.S., and Burman, W.J. 2009. Epidemiology of healthcare‐associated bloodstream infection caused by USA300 strains of methicillin‐resistant Staphylococcus aureus in 3 affiliated hospitals. Infect. Control Hospital Epidemiol. 30:233‐241.
   Jevons, M.P. 1961. “Celbenin”‐resistant staphylococci. Br. Med. J. 1:124‐125.
   Katzif, S., Lee, E.‐H., Law, A.B., Tzeng, Y.‐L., and Shafer, W.M. 2005. CspA regulates pigment production in Staphylococcus aureus through a SigB‐dependent mechanism. J. Bacteriol. 187:8181‐8184.
   Kennedy, A.D., Otto, M., Braughton, K.R., Whitney, A.R., Chen, L., Mathema, B., Mediavilla, J.R., Byrne, K.A., Parkins, L.D., Tenover, F.C., Kreiswirth, B.N., Musser, J.M., and DeLeo, F.R. 2008. Epidemic community‐associated methicillin‐resistant Staphylococcus aureus: Recent clonal expansion and diversification. Proc. Natl. Acad. Sci. U.S.A. 105:1327‐1332.
   Kreiswirth, B.N., Löfdahl, S., Betley, M.J., O'Reilly, M., Schlievert, P.M., Bergdoll, M.S., and Novick, R.P. 1983. The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305:709‐712.
   Kuroda, M., Ohta, T., Uchiyama, I., Baba, T., Yuzawa, H., Kobayashi, I., Cui, L., Oguchi, A., Aoki, K.‐I., Nagai, Y., Lian, J., Ito, T., Kanamori, M., Matsumaru, H., Maruyama, A., Murakami, H., Hosoyama, A., Mizutani‐Ui, Y., Takahashi, N.K., Sawano, T., Inoue, R., Kaito, C., Sekimizu, K., Hirakawa, H., Kuhara, S., Goto, S., Yabuzaki, J., Kanehisa, M., Yamashita, A., Oshima, K., Furuya, K., Yoshino, C., Shiba, T., Hattori, M., Ogasawara, N., Hayashi, H., and Hiramatsu, K. 2001. Whole genome sequencing of meticillin‐resistant Staphylococcus aureus. Lancet 357:1225‐1240.
   Li, C., Sun, F., Cho, H., Yelavarthi, V., Sohn, C., He, C., Schneewind, O., and Bae, T. 2010. CcpA mediates proline auxotrophy and is required for Staphylococcus aureus pathogenesis. J. Bacteriol. 192:3883‐3892.
   Li, M., Du, X., Villaruz, A.E., Diep, B.A., Wang, D., Song, Y., Tian, Y., Hu, J., Yu, F., Lu, Y., and Otto, M. 2012. MRSA epidemic linked to a quickly spreading colonization and virulence determinant. Nat. Med. 18:816‐819.
   Liu, G.Y. 2005. Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J. Exp. Med. 202:209‐215.
   McDougal, L.K., Steward, C.D., Killgore, G.E., Chaitram, J.M., McAllister, S.K., and Tenover, F.C. 2003. Pulsed‐field gel electrophoresis typing of oxacillin‐resistant Staphylococcus aureus isolates from the United States: Establishing a national database. J. Clin. Microbiol. 41:5113‐5120.
   Millar, B.C., Loughrey, A., Elborn, J.S., and Moore, J.E. 2007. Proposed definitions of community‐associated meticillin‐resistant Staphylococcus aureus (CA‐MRSA). J. Hosp. Infect. 67:109‐113.
   Moore, C.L., Hingwe, A., Donabedian, S.M., Perri, M.B., Davis, S.L., Haque, N.Z., Reyes, K., Vager, D., and Zervos, M.J. 2009. Comparative evaluation of epidemiology and outcomes of methicillin‐resistant Staphylococcus aureus (MRSA) USA300 infections causing community‐ and healthcare‐associated infections. Int. J. Antimicrob. Agents 34:148‐155.
   Nair, D., Memmi, G., Hernandez, D., Bard, J., Beaume, M., Gill, S., François, P., and Cheung, A. L. 2011. Whole‐genome sequencing of Staphylococcus aureus strain RN4220, a key laboratory strain used in virulence research, identifies mutations that affect not only virulence factors but also the fitness of the strain. J. Bacteriol. 193:2332‐2335.
   Novick, R. 1967. Properties of a cryptic high‐frequency transducing phage in Staphylococcus aureus. Virology 33:155‐166.
   Novick, R.P. and Richmond, M.H. 1965. Nature and interactions of the genetic elements governing penicillinase synthesis in Staphylococcus aureus. J. Bacteriol. 90:467‐480.
   Nuxoll, A.S., Halouska, S.M., Sadykov, M.R., Hanke, M.L., Bayles, K.W., Kielian, T., Powers, R., and Fey, P.D. 2012. CcpA regulates arginine biosynthesis in Staphylococcus aureus through repression of proline catabolism. PLoS Pathog. 8:e1003033.
   Ogston, A. 1881. Report upon micro‐organisms in surgical diseases. Br. Med. J. 1:369.b2‐375.
   Pelz, A., Wieland, K.‐P., Putzbach, K., Hentschel, P., Albert, K., and Götz, F. 2005. Structure and biosynthesis of staphyloxanthin from Staphylococcus aureus. J. Biol. Chem. 280:32493‐32498.
   Peng, H.L., Novick, R.P., Kreiswirth, B., Kornblum, J., and Schlievert, P. 1988. Cloning, characterization, and sequencing of an accessory gene regulator (agr) in Staphylococcus aureus. J. Bacteriol. 170:4365‐4372.
   Popovich, K.J., Weinstein, R.A., and Hota, B. 2008. Are community‐associated methicillin‐resistant Staphylococcus aureus (MRSA) strains replacing traditional nosocomial MRSA strains? Clin. Infect. Dis. 46:787‐794.
   Sabath, L.D., Wallace, S.J., and Gerstein, D.A. 1972. Suppression of intrinsic resistance to methicillin and other penicillins in Staphylococcus aureus. Antimicrob. Agents Chemother. 2:350‐355.
   Sakoulas, G., Gold, H.S., Venkataraman, L., DeGirolami, P.C., Eliopoulos, G.M., and Qian, Q. 2001. Methicillin‐resistant Staphylococcus aureus: Comparison of susceptibility testing methods and analysis of mecA‐positive susceptible strains. J. Clin. Microbiol. 39:3946‐3951.
   Seidl, K., Müller, S., Francois, P., Kriebitzsch, C., Schrenzel, J., Engelmann, S., Bischoff, M., and Berger‐Bächi, B. 2009. Effect of a glucose impulse on the CcpA regulon in Staphylococcus aureus. BMC Microbiol. 9:95.
   Sieradzki, K., Leski, T., Dick, J., Borio, L., and Tomasz, A. 2003. Evolution of a vancomycin‐intermediate Staphylococcus aureus strain in vivo: Multiple changes in the antibiotic resistance phenotypes of a single lineage of methicillin‐resistant S. aureus under the impact of antibiotics administered for chemotherapy. J. Clin. Microbiol. 41:1687‐1693.
   Soutourina, O., Poupel, O., Coppée, J.‐Y., Danchin, A., Msadek, T., and Martin‐Verstraete, I. 2009. CymR, the master regulator of cysteine metabolism in Staphylococcus aureus, controls host sulphur source utilization and plays a role in biofilm formation. Mol. Microbiol. 73:194‐211.
   Thurlow, L.R., Joshi, G.S., and Richardson, A.R. 2012. Virulence strategies of the dominant USA300 lineage of community‐associated methicillin‐resistant Staphylococcus aureus (CA‐MRSA). FEMS Immunol. Med. Microbiol. 65:5‐22.
   Ubukata, K., Nonoguchi, R., Matsuhashi, M., and Konno, M. 1989. Expression and inducibility in Staphylococcus aureus of the mecA gene, which encodes a methicillin‐resistant S. aureus‐specific penicillin‐binding protein. J. Bacteriol. 171:2882‐2885.
   Unal, S., Hoskins, J., Flokowitsch, J.E., Wu, C.Y., Preston, D.A., and Skatrud, P.L. 1992. Detection of methicillin‐resistant staphylococci by using the polymerase chain reaction. J. Clin. Microbiol. 30:1685‐1691.
   Weber, J.T. 2005. Community‐associated methicillin‐resistant Staphylococcus aureus. Clin. Infect. Dis. 41:S269‐S272.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library