Genetic Manipulation of Staphylococcus aureus

Olaf Schneewind1, Dominique Missiakas1

1 Department of Microbiology, University of Chicago, Chicago, Illinois
Publication Name:  Current Protocols in Microbiology
Unit Number:  Unit 9C.3
DOI:  10.1002/9780471729259.mc09c03s32
Online Posting Date:  February, 2014
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Staphylococcus aureus is a facultative anaerobic Gram‐positive coccus and a member of the normal skin flora, as well as that of the nasal passages of humans. However, S. aureus can also gain entry into the host and cause life‐threatening infections or persist as disease foci that develop into suppurative abscesses. While genetically tractable, the manipulation of S. aureus remains challenging. This unit describes methods developed in our laboratory for gene disruption by allelic replacement and transposition. We also provide a protocol for bacteriophage‐mediated transduction of mutants marked with selectable alleles and describe plasmid utilization for complementation studies. Curr. Protoc. Microbiol. 32:9C.3.1‐9C.3.19. © 2014 by John Wiley & Sons, Inc.

Keywords: Staphylococcus aureus; plasmid; bursa aurealis; transduction; allelic replacement

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Preparation of Competent Cells of S. aureus
  • Basic Protocol 2: Electroporation of Plasmid DNA and Plating for Selection of Transformants
  • Basic Protocol 3: Transposon Mutagenesis Using bursa aurealis
  • Basic Protocol 4: Mapping bursa aurealis Insertions by Inverse PCR
  • Basic Protocol 5: Allelic Replacement Using pKOR1
  • Basic Protocol 6: Preparing S. aureus Lysates for Extraction of DNA
  • Basic Protocol 7: Transduction
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Preparation of Competent Cells of S. aureus

  Materials
  • S. aureus strain from a frozen stock
  • Tryptic soy agar (TSA) plates (see recipe for plate preparation)
  • Tryptic soy broth (TSB; see recipe)
  • Ice‐cold sterile 0.5 M sucrose in deionized water
  • Ice
  • 37°C shaking incubator
  • Sterile loop
  • 15‐ml culture tubes
  • 1‐liter flasks
  • Spectrophotometer and plastic cuvette to measure cell density at 600 nm (A 600)
  • 50‐ml sterile centrifuge tubes (that can be centrifuged at up to 5,000 × g), sterile
  • Centrifuge
  • Microcentrifuge tubes, sterile
  • Dry ice‐ethanol bath
  • −80°C freezer

Basic Protocol 2: Electroporation of Plasmid DNA and Plating for Selection of Transformants

  Materials
  • Frozen competent cells (see protocol 1)
  • Ice
  • Plasmid DNA (see protocol 6 and Troubleshooting section)
  • Tryptic soy broth (TSB; see recipe)
  • TSA plates (see recipe for plate preparation) containing either chloramphenicol at 5 or 10 µg/ml or tetracycline at 2.5 µg/ml (alone or in combination)
  • 0.1‐cm electroporation cuvettes (e.g., Bio‐Rad)
  • Electroporator
  • 1.5‐ml microcentrifuge tubes, sterile
  • 30°C incubator
  • Sterile tips and pipetman
  • Sterile spreader
  • 37°C incubator, optional

Basic Protocol 3: Transposon Mutagenesis Using bursa aurealis

  Materials
  • A target S. aureus strain carrying plasmids pBursa and pFA545, prepared as described in Basic Protocols protocol 11 and protocol 22
  • TSA plates (see recipe for plate preparation) containing antibiotics (see below)
  • Antibiotics: chloramphenicol (Chl), erythromycin (Erm), and tetracycline (Tet) antibiotics used at the following final concentrations 5, 10, and 2.5 µg/ml, respectively
  • Sterile water
  • Tryptic soy broth (TSB; see recipe)
  • Tryptic soy agar (TSA; see recipe)
  • 2× cryopreservation solution (see recipe)
  • Flasks, sterile
  • 43°C shaking incubator
  • 1.5‐ml microcentrifuge tubes
  • Sterile loop
  • Vortex mixer
  • Sterile glass beads
  • 2‐ml cryotubes

Basic Protocol 4: Mapping bursa aurealis Insertions by Inverse PCR

  Materials
  • Isolated cultures (see protocol 3)
  • 10× buffer for AciI (New England Biolabs or preferred commercial source)
  • Restriction enzyme AciI (New England Biolabs or preferred commercial source)
  • Chromosomal DNA (see protocol 3)
  • T4 DNA ligase and 10× buffer for T4 DNA ligase (New England Biolabs or preferred commercial source)
  • Qiagen MinElute 96 UF PCR purification kit (or preferred kit for purification of DNA fragments)
  • Oligonucleotide primers:
  • Martn‐F (5′‐TTT ATG GTA CCA TT CAT TTT CCT GCT TTT TC)
  • Martn‐ermR (5′‐AAA CTG ATT TTT AGT AAA CAG TTG ACG ATA TTC)
  • 1% agarose gel
  • 2× PCR Master Mix (Promega)
  • 96‐well plates
  • 37°C incubator
  • 200‐µl PCR tubes
  • Thermal cycler
  • Gel electrophoresis equipment
  • Additional reagents and equipment for lysing cells to extract genomic DNA (see protocol 6)

Basic Protocol 5: Allelic Replacement Using pKOR1

  Materials
  • AccuPrime Pfx SuperMix (Invitrogen; for PCR amplification)
  • Cloning primers
  • Agarose gel
  • Preferred kit for extraction of DNA from agarose gel
  • T4 DNA ligase and buffer (NEB)
  • BP Clonase enzyme mix (Invitrogen)
  • Competent cells of E. coli DH5α and appropriate medium for growth
  • Ampicillin (Amp) and chloramphenicol (Chl) antibiotics used at the final concentrations of 100 and 10 µg/ml, for selection of E. coli and S. aureus carrying pKOR1, respectively
  • Tryptic soy broth (TSB; see recipe) and tryptic soy agar (TSA; see recipe) to grow S. aureus
  • Sterile water
  • TSA plates (see recipe for plate preparation) containing anhydrotetracycline at 100 ng/ml
  • TSA plates (see recipe for plate preparation) without anhydrotetracycline
  • Gateway manual downloaded from http://www.invitrogen.com (consult as needed if encountering technical difficulties, and see additional comments in the Commentary section)
  • Gel electrophoresis equipment
  • 30°C, 37°C, and 43°C incubators
  • 15‐ml culture tubes
  • Additional reagents and equipment for amplifying the target DNA (see protocol 6)

Basic Protocol 6: Preparing S. aureus Lysates for Extraction of DNA

  Materials
  • Tryptic soy broth (TSB; see recipe)
  • TSM buffer (see recipe)
  • Lysostaphin (see recipe)
  • 15‐ml culture tubes
  • 1.5‐ml microcentrifuge tubes
  • Microcentrifuge
  • 37°C incubator
  • Additional reagents and equipment for growing the target strain (see protocol 1 in unit 9.1)

Basic Protocol 7: Transduction

  Materials
  • The donor strain (Donor) that carries a mutation in a target gene marked with a selectable marker (such as bursa aurealis insertion)
  • Tryptic soy broth (TSB; see recipe)
  • 5 mM CaCl 2
  • Phage lysate amplified on a sensitive strain with no resistance marker [phage titer should be ∼109‐1010 plaque‐forming units (pfu)]
  • Recipient strain, preferentially the parent strain used for bursa aurealis mutagenesis (Recipient)
  • 40 mM Na‐citrate (citrate buffer; see recipe)
  • Tryptic soy agar (TSA; see recipe)
  • TSA plates containing erythromycin at 10 µg/ml and Na citrate at 40 mM
  • 15‐ml culture tubes
  • 250‐ml flasks
  • Spreader
  • 30°C, 37°C incubators
  • 50‐ml centrifuge tubes
  • Centrifuges (for 50‐ml tubes, such as Sorvall, and for microcentrifuge tubes)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K. 2002. Short Protocols in Molecular Biology, 5th ed. John Wiley & Sons, New York.
  Bae, T. and Schneewind, O. 2006. Allelic replacement in Staphylococcus aureus with inducible counter‐selection. Plasmid 55:58‐63.
  Bae, T., Banger, A.K., Wallace, A., Glass, E.M., Aslund, F., Schneewind, O., and Missiakas, D.M. 2004. Staphylococcus aureus virulence genes identified by bursa aurealis mutagenesis and nematode killing. Proc. Natl. Acad. Sci. U.S.A. 101:12312‐12317.
  Bernard, P. and Couturier, M. 1992. Cell killing by the F plasmid CcdB protein involves poisoning of DNA‐topoisomerase II complexes. J. Mol. Biol. 226:735‐745.
  Bubeck Wardenburg, J., Williams, W.A., and Missiakas, D. 2006. Host defenses against Staphylococcus aureus infection require recognition of bacterial lipoproteins. Proc. Natl. Acad. Sci. U.S.A. 103:13831‐13836.
  Burts, M.L., Williams, W.A., DeBord, K., and Missiakas, D.M. 2005. EsxA and EsxB are secreted by an ESAT‐6‐like system that is required for the pathogenesis of Staphylococcus aureus infections. Proc. Natl. Acad. Sci. U.S.A. 102:1169‐1174.
  Camilli, A., Portnoy, A., and Youngman, P. 1990. Insertional mutagenesis of Listeria monocytogenes with a novel Tn917 derivative that allows direct cloning of DNA flanking transposon insertions. J. Bacteriol. 172:3738‐3744.
  Fitzgerald, S.N. and Foster, T.J. 2000. Molecular analysis of the tagF gene, encoding CDP‐glycerol: Poly(glycerophosphate) glycerophosphotransferase of Staphylococcus epidermidis ATCC 14990. J. Bacteriol. 182:1046‐1052.
  Foster, T.J. 1998. Molecular genetic analysis of staphylococcal virulence. Methods Microbiol. 27:432‐454.
  Giesbrecht, P., Kersten, T., Maidhof, H., and Wecke, J. 1998. Staphylococcal cell wall: Morphogenesis and fatal variations in the presence of penicillin. Microbiol. Mol. Biol. Rev. 62:1371‐1414.
  Greene, C., McDevitt, D., Francois, P., Vaudaux, P.E., Lew, D.P., and Foster, T.J. 1995. Adhesion properties of mutants of Staphylococcus aureus defective in fibronectin‐binding proteins and studies on the expression of fnb genes. Mol. Microbiol. 17:1143‐1152.
  Hartley, J.L., Temple, G.F., and Brasch, M.A. 2000. DNA cloning using in vitro site‐specific recombination. Genome Res. 10:1788‐1795.
  Hartley, R.W. and Paddon, C.J. 1986. Use of plasmid pTV1 in transposon mutagenesis and gene cloning in Bacillus amyloliquefaciens. Plasmid 16:45‐51.
  Iordanescu, S. 1975. Recombinant plasmid obtained from two different, compatible staphylococcal plasmids. J. Bacteriol. 124:597‐601.
  Iordanescu, S., Surdeanu, M., Della Latta, P., and Novick, R. 1978. Incompatibility and molecular relationships between small Staphylococcal plasmids carrying the same resistance marker. Plasmid 1:468‐479.
  Janzon, L. and Arvidson, S. 1990. The role of the delta‐lysin gene (hld) in the regulation of virulence genes by the accessory gene regulator (agr) in Staphylococcus aureus. EMBO J. 9:1391‐1399.
  Ji, Y., Zhang, B., Van, S.F., Horn, Warren, P., Woodnutt, G., Burnham, M.K., and Rosenberg, M. 2001. Identification of critical staphylococcal genes using conditional phenotypes generated by antisense RNA. Science 293:2266‐2269.
  Kreiswirth, B.N., Lofdahl, S., Betley, M.J., O'Reilly, M., Schlievert, P.M., Bergdoll, M.S., and Novick, R.P. 1983. The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305:709‐712.
  Lampe, D.J., Churchill, M.E., and Robertson, H.M. 1996. A purified mariner transposase is sufficient to mediate transposition in vitro. EMBO J. 15:5470‐5479.
  Lederberg, J., Lederberg, E.M., Zinder, N.D., and Lively, E.R. 1951. Recombination analysis of bacterial heredity. Cold Spring Harb. Symp. Quant. Biol. 16:413‐443.
  Lowy, F.D. 1998. Staphylococcus aureus infections. N. Engl. J. Med. 339:520‐532.
  McAdow, M., Kim, H.K., Dedent, A.C., Hendrickx, A.P., Schneewind, O., and Missiakas, D.M. 2011. Preventing Staphylococcus aureus sepsis through the inhibition of its agglutination in blood. PLoS Pathog. 7:e1002307.
  Melton, D.A., Krieg, P.A., Rebagliati, M.R., Maniatis, T., Zinn, K., and Green, M.R. 1984. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 12:7035‐7056.
  Metcalf, W.W., Jiang, W., and Wanner, B.L. 1994. Use of the rep technique for allele replacement to construct new Escherichia coli hosts for maintenance of R6K gamma origin plasmids at different copy numbers. Gene 138:1‐7.
  Miki, T., Park, J.A., Nagao, K., Murayama, N., and Horiuchi, T. 1992. Control of segregation of chromosomal DNA by sex factor F in Escherichia coli. Mutants of DNA gyrase subunit A suppress letD (ccdB) product growth inhibition. J. Mol. Biol. 225:39‐52.
  Miller, J.H. 1992. A Short Course in Bacterial Genetics. Cold Spring Harbor Laboratory Press, New York.
  Monk, I.R., Shah, I.M., Xu, M., Tan, M.W., and Foster, T.J. 2012. Transforming the untransformable: Application of direct transformation to manipulate genetically Staphylococcus aureus and Staphylococcus epidermidis. MBio 3; doi:10.1128/mBio.00277‐11.
  Morikawa, K., Inose, Y., Okamura, H., Maruyama, A., Hayashi, H., Takeyasu, K., and Ohta, T. 2003. A new staphylococcal sigma factor in the conserved gene cassette: Functional significance and implication for the evolutionary processes. Genes Cells 8:699‐712.
  Morikawa, K., Takemura, A.J., Inose, Y., Tsai, M., Nguyen Thi le, T., Ohta, T., and Msadek, T. 2012. Expression of a cryptic secondary sigma factor gene unveils natural competence for DNA transformation in Staphylococcus aureus. PLoS Pathog. 8:e1003003.
  Novick, R. 1967. Properties of a cryptic high‐frequency transducing phage in Staphylococcus aureus. Virology 33:155‐166.
  Novick, R.P. 1990. The Staphylococcus as a molecular genetic system. In Molecular Biology of the Staphylococci (R.P. Novick, ed.) pp. 1‐40. VCH Publishers, New York.
  Novick, R.P. 1991. Genetic systems in staphylococci. Methods Enzymol. 204:587‐636.
  Novick, R.P., Edelman, I., and Lofdahl, S. 1986. Small Staphylococcus aureus plasmids are transduced as linear multimers that are formed and resolved by replicative processes. J. Mol. Biol. 192:209‐220.
  O'Connell, D., Pattee, P.A., and Foster, T.J. 1993. Sequence and mapping of the aroA gene of Staphylococcus aureus 8325‐4. J. Gen. Microbiol. 139:1449‐1460.
  Robertson, H.M. and Lampe, D.J. 1995. Recent horizontal transfer of a mariner transposable element among and between Diptera and Neuroptera. Mol. Biol. Evol. 12:850‐862.
  Schneewind, O., Model, P., and Fischetti, V.A. 1992. Sorting of protein A to the staphylococcal cell wall. Cell 70:267‐281.
  Shaw, J.H. and Clewell, D.B. 1985. Complete nucleotide sequence of macrolide‐lincosamide‐streptogramin B‐resistance transposon Tn917 in Streptococcus faecalis. J. Bacteriol. 164:782‐796.
  Tam, C., Glass, E.M., Anderson, D.M., and Missiakas, D. 2006. Transposon mutagenesis of Bacillus anthracis strain Sterne using Bursa aurealis. Plasmid 56:74‐77.
  Tomich, P.K., An, F.Y., and Clewell, D.B. 1980. Properties of erythromycin‐inducible transposon Tn917 in Streptococcus faecalis. J. Bacteriol. 141:1366‐1374.
  Trieu‐Cuot, P., Poyart‐Salmeron, C., Carlier, C., and Courvalin, P. 1990. Nucleotide sequence of the erythromycin resistance gene of the conjugative transposon Tn1545. Nucleic Acids Res. 18:3660.
  Vieira, J. and Messing, J. 1982. The pUC plasmids, an M13mp7‐derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259‐268.
  Villafane, R., Bechhofer, D.H., Narayanan, C.S., and Dubnau, D. 1987. Replication control genes of plasmid pE194. J. Bacteriol. 169:4822‐4829.
  Waldron, D.E. and Lindsay, J.A. 2006. Sau1: A novel lineage‐specific type I restriction‐modification system that blocks horizontal gene transfer into Staphylococcus aureus and between S. aureus isolates of different lineages. J. Bacteriol. 188:5578‐5585.
  Xia, G. and Wolz, C. 2013. Phages of Staphylococcus aureus and their impact on host evolution. Infect. Genet. Evol. doi:10.1016/j.meegid.2013.04.022. [Epub ahead of print]
  Yanisch‐Perron, C., Vieira, J., and Messing, J. 1985. Improved M13 phage cloning vectors and host strains: Nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103‐119.
  Youngman, P. 1987. Plasmid vectors for recovering and exploiting Tn917 transpositions in Bacillus and other Gram‐positive bacteria. In Plasmids: A Practical Approach (K.G. Hardy, ed.) pp. 79‐103. IRL Press, Oxford.
  Youngman, P.J., Perkins, J.B., and Losick, R. 1983. Genetic transposition and insertional mutagenesis in Bacillus subtilis with Streptococcus faecalis transposon Tn917. Proc. Natl. Acad. Sci. U.S.A. 80:2305‐2309.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library