Laboratory Maintenance of Borrelia burgdorferi

Wolfram R. Zückert1

1 University of Kansas Medical Center, Kansas City, Kansas
Publication Name:  Current Protocols in Microbiology
Unit Number:  Unit 12C.1
DOI:  10.1002/9780471729259.mc12c01s4
Online Posting Date:  February, 2007
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

This unit describes the propagation of Borrelia burgdorferi as well as other “cultivable” Borrelia species in Barbour‐Stoenner‐Kelly‐II (BSK‐II) medium. It supplies a detailed recipe for BSK‐II, as well as protocols for standard liquid culture, the generation of frozen Borrelia stocks, and the plating of B. burgdorferi cells in solid BSK‐II medium.

Keywords: Borrelia; spirochete; Barbour‐Stoenner‐Kelly‐II medium; broth culture; plating; frozen stocks

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Strategic Planning
  • Basic Protocol 1: Cultivation and Storage of Borrelia burgdorferi in BSK‐II
  • Basic Protocol 2: Preparation of Frozen Borrelia Stocks
  • Basic Protocol 3: Plating of B. burgdorferi
  • Reagents and Solutions
  • Commentary
  • Literature Cited
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Cultivation and Storage of Borrelia burgdorferi in BSK‐II

  Materials
  • Complete BSK‐II medium (see recipe)
  • Late‐exponential‐phase B. burgdorferi culture or frozen stock (see protocol 2)
  • 8‐ml polystyrene round‐bottom screw cap tubes (e.g., Falcon 352027)
  • 34°C incubator
  • Petroff‐Hausser counting chamber (optional; appendix 4A)

Basic Protocol 2: Preparation of Frozen Borrelia Stocks

  Materials
  • Late‐exponential‐phase B. burgdorferi BSK‐II culture ( protocol 1)
  • Sterile 100% DMSO or 80% (v/v) glycerol solution
  • 2‐ml polypropylene cryogenic vial (Corning cat no. 430659), sterile

Basic Protocol 3: Plating of B. burgdorferi

  Materials
  • 2% (top) and 3% (bottom) agarose stock (see recipe)
  • 2× BSK‐II (see recipe), 37° and 45°C
  • B. burgdorferi cell suspension (in BSK‐II or PBS; protocol 1)
  • 45° and 65°C water baths
  • 50‐ml disposable polypropylene tube
  • 10‐cm diameter polystyrene petri dishes
  • 34°C, 5% CO 2 incubator or anaerobic jar with hydrogen‐ and CO 2‐generating packs (e.g., BD GasPacks Plus)
  • 15‐ml disposable polypropylene tubes
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

   Armstrong, P.M., Rich, S.M., Smith, R.D., Hartl, D.L., Spielman, A., and Telford, S.R. III 1996. A new Borrelia infecting Lone Star ticks. Lancet 69:67‐68.
   Babb, K., El‐Hage, N., Miller, J.C., Carroll, J.A., and Stevenson, B. 2001. Distinct regulatory pathways control expression of Borrelia burgdorferi infection‐associated OspC and Erp surface proteins. Infect. Immun. 69:4146‐4153.
   Barbour, A.G. 1984. Isolation and cultivation of Lyme disease spirochetes. Yale J. Biol. Med. 57:521‐525.
   Barbour, A.G. 1993. Linear DNA of Borrelia species and antigenic variation. Trends Microbiol. 1:236‐239.
   Barbour, A.G. 2003. Antigenic variation in Borrelia: Relapsing fever and Lyme borreliosis. In Antigenic Variation (A. Craig, and A. Scherf, eds) pp. 319‐356. Academic Press, London.
   Barbour, A.G., Maupin, G.O., Teltow, G.J., Carter, C.J., and Piesman, J. 1996. Identification of an uncultivable Borrelia species in the hard tick Amblyomma americanum: Possible agent of a Lyme disease‐like illness. J. Infect. Dis. 173:403‐409.
   Burgdorfer, W., Barbour, A.G., Hayes, S.F., Benach, J.L., Grunwaldt, E., and Davis, J.P. 1982. Lyme disease‐a tick‐borne spirochetosis? Science 216:1317‐1319.
   Byram, R., Stewart, P.E., and Rosa, P. 2004. The essential nature of the ubiquitous 26‐kilobase circular replicon of Borrelia burgdorferi. J. Bacteriol. 186:3561‐3569.
   Casjens, S., Delange, M., Ley, H.L.R., Rosa, P., and Huang, W.M. 1995. Linear chromosomes of Lyme disease agent spirochetes: Genetic diversity and conservation of gene order. J. Bacteriol. 177:2769‐2780.
   Casjens, S., Palmer, N., van Vugt, R., Huang, W.M., Stevenson, B., Rosa, P., Lathigra, R., Sutton, G., Peterson, J., Dodson, R.J., Haft, D., Hickey, E., Gwinn, M., White, O., and Fraser, C.M. 2000. A bacterial genome in flux: The twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol. Microbiol. 35:490‐516.
   Cutler, S.J., Akintunde, C.O., Moss, J., Fukunaga, M., Kurtenbach, K., Talbert, A., Zhang, H., Wright, D.J., and Warrell, D.A. 1999. Successful in vitro cultivation of Borrelia duttonii and its comparison with Borrelia recurrentis. Int. J. Syst. Bacteriol. 49:1793‐1799.
   Elias, A.F., Stewart, P.E., Grimm, D., Caimano, M.J., Eggers, C.H., Tilly, K., Bono, J.L., Akins, D.R., Radolf, J.D., Schwan, T.G., Rosa, P. 2002. Clonal polymorphism of Borrelia burgdorferi strain B31 MI: Implications for mutagenesis in an infectious strain background. Infect. Immun. 70:2139‐2150.
   Frank, K.L., Bundle, S.F., Kresge, M.E., Eggers, C.H., and Samuels, D.S. 2003. aadA confers streptomycin resistance in Borrelia burgdorferi. J. Bacteriol. 185:6723‐6727.
   Fraser, C.M., Casjens, S., Huang, W.M., Sutton, G.G., Clayton, R., Lathigra, R., White, O., Ketchum, K.A., Dodson, R., Hickey, E.K., Gwinn, M., Dougherty, B., Tomb, J.F., Fleischmann, R.D., Richardson, D., Peterson, J., Kerlavage, A.R., Quackenbush, J., Salzberg, S., Hanson, M., van Vugt, R., Palmer, N., Adams, M.D., Gocayne, J., Weidman, J., Utterback, T., Watthey, L., McDonald, L., Artiach, P., Bowman, C., Garland, S., Fuji, C., Cotton, M.D., Horst, K., Roberts, K., Hatch, B., Smith, H.O., and Venter, J.C. 1997. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390:580‐586.
   Glöckner, G., Lehmann, R., Romualdi, A., Pradella, S., Schulte‐Spechtel, U., Schilhabel, M., Wilske, B., Suhnel, J., and Platzer, M. 2004. Comparative analysis of the Borrelia garinii genome. Nucleic Acids Res. 32:6038‐6046.
   Guyard, C., Chester, E.M., Raffel, S.J., Schrumpf, M.E., Policastro, P.F., Porcella, S.F., Leong, J.M., and Schwan, T.G. 2005. Relapsing fever spirochetes contain chromosomal genes with unique direct tandemly repeated sequences. Infect. Immun. 73:3025‐3037.
   Hinnebusch, J. and Barbour, A.G. 1992. Linear‐ and circular‐plasmid copy numbers in Borrelia burgdorferi. J. Bacteriol. 174:5251‐5257.
   Kelly, R. 1971. Cultivation of Borrelia hermsi. Science 173:443‐444.
   Kobryn, K. and Chaconas, G. 2002. ResT, a telomere resolvase encoded by the Lyme disease spirochete. Mol. Cell 9:195‐201.
   Kurtti, T.J., Munderloh, U.G., Ahlstrand, G.G., and Johnson, R.C. 1988. Borrelia burgdorferi in tick cell culture: Growth and cellular adherence. J. Med. Entomol. 25:256‐261.
   Kurtti, T.J., Munderloh, U.G., Krueger, D.E., Johnson, R.C., and Schwan, T.G. 1993. Adhesion to and invasion of cultured tick (Acarina: Ixodidae) cells by Borrelia burgdorferi (Spirochaetales: Spirochaetaceae) and maintenance of infectivity. J. Med. Entomol. 30:586‐596.
   Motaleb, M.A., Corum, L., Bono, J.L., Elias, A.F., Rosa, P., Samuels, D.S., and Charon, N.W. 2000. Borrelia burgdorferi periplasmic flagella have both skeletal and motility functions. Proc. Natl. Acad. Sci. U.S.A. 97:10899‐10904.
   Palmer, N., Fraser, C., and Casjens, S. 2000. Distribution of twelve linear extrachromosomal DNAs in natural isolates of Lyme disease spirochetes. J. Bacteriol. 182:2476‐2480.
   Pollack, R.J., Telford, S.R. III., and Spielman, A. 1993. Standardization of medium for culturing Lyme disease spirochetes. J. Clin. Microbiol. 31:1251‐1255.
   Preac‐Mursic, V., Wilske, B., and Schierz, G. 1986. European Borrelia burgdorferi isolated from humans and ticks culture conditions and antibiotic susceptibility. Zentralbl. Bakteriol. Mikrobiol. Hyg. [A] 263:112‐118.
   Rosa, P.A., Tilly, K., and Stewart, P.E. 2005. The burgeoning molecular genetics of the Lyme disease spirochaete. Nat. Rev. Microbiol. 3:129‐143.
   Sadziene, A., Wilske, B., Ferdows, M.S., and Barbour, A.G. 1993a. The cryptic ospC gene of Borrelia burgdorferi B31 is located on a circular plasmid. Infect. Immun. 61:2192‐2195.
   Sadziene, A., Thompson, P.A., and Barbour, A.G. 1993b. In vitro inhibition of Borrelia burgdorferi growth by antibodies. J. Infect. Dis. 167:165‐172.
   Sadziene, A., Thomas, D.D., and Barbour, A.G. 1995. Borrelia burgdorferi mutant lacking Osp: Biological and immunological characterization. Infect. Immun. 63:1573‐1580.
   Samuels, D.S. 1995. Electrotransformation of the spirochete Borrelia burgdorferi. Methods Mol. Biol. 47:253‐259.
   Schwan, T.G., Burgdorfer, W., and Garon, C.F. 1988. Changes in infectivity and plasmid profile of the Lyme disease spirochete, Borrelia burgdorferi, as a result of in vitro cultivation. Infect. Immun. 56:1831‐1836.
   Schwan, T.G., Battisti, J.M., Porcella, S.F., Raffel, S.J., Schrumpf, M.E., Fischer, E.R., Carroll, J.A., Stewart, P.E., Rosa, P., and Somerville, G.A. 2003. Glycerol‐3‐phosphate acquisition in spirochetes: Distribution and biological activity of glycerophosphodiester phosphodiesterase (GlpQ) among Borrelia species. J. Bacteriol. 185:1346‐1356.
   Stamm, L.V., Hodinka, R.L., Wyrick, P.B., and Bassford, P.J. Jr. 1987 Changes in the cell surface properties of Treponema pallidum that occur during in vitro incubation of freshly extracted organisms. Infect. Immun. 55:2255‐2261.
   Steere, A.C., Grodzicki, R.L., Kornblatt, A.N., Craft, J.E., Barbour, A.G., Burgdorfer, W., Schmid, G.P., Johnson, E., and Malawista, S.E. 1983. The spirochetal etiology of Lyme disease. N. Engl. J. Med. 308:733‐740.
   Stevenson, B., Schwan, T.G., and Rosa, P.A. 1995. Temperature‐related differential expression of antigens in the Lyme disease spirochete, Borrelia burgdorferi. Infect. Immun. 63:4535‐4539.
   Stevenson, B., Porcella, S.F., Oie, K.L., Fitzpatrick, C.A., Raffel, S.J., Lubke, L., Schrumpf, M.E., and Schwan, T.G. 2000. The relapsing fever spirochete Borrelia hermsii contains multiple, antigen‐encoding circular plasmids that are homologous to the cp32 plasmids of Lyme disease spirochetes. Infect. Immun. 68:3900‐3908.
   Stoenner, H.G., Dodd, T., and Larsen, C. 1982. Antigenic variation of Borrelia hermsii. J. Exp. Med. 156:1297‐1311.
   Varela, A.S., Luttrell, M.P., Howerth, E.W., Moore, V.A., Davidson, W.R., Stallknecht, D.E., and Little, S.E. 2004. First culture isolation of Borrelia lonestari, putative agent of southern tick‐associated rash illness. J. Clin. Microbiol. 42:1163‐1169.
   Wang, G., Iyer, R., Bittker, S., Cooper, D., Small, J., Wormser, G.P., and Schwartz, I. 2004. Variations in Barbour‐Stoenner‐Kelly culture medium modulate infectivity and pathogenicity of Borrelia burgdorferi clinical isolates. Infect. Immun. 72:6702‐6706.
   Yang, X., Popova, T.G., Goldberg, M.S., and Norgard, M.V. 2001. Influence of cultivation media on genetic regulatory patterns in Borrelia burgdorferi. Infect. Immun. 69:4159‐4163.
   Zückert, W.R., Lloyd, J.E., Stewart, P.E., Rosa, P.A., and Barbour, A.G. 2004. Cross‐species surface display of functional spirochetal lipoproteins by recombinant Borrelia burgdorferi. Infect. Immun. 72:1463‐1469.
Key References
   Barbour, 1984. See above
  Describes the cultivation of Borrelia in BSK‐II medium, including its original recipe.
   Hinnebusch & Barbour, 1992. See above
  Describes the cloning of B. burgdorferi by subsurface plating in BSK‐II agar.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library