Gene Transfer to the CNS Using Recombinant Adeno‐Associated Virus

Lorelei Stoica1, Seemin S. Ahmed2, Guangping Gao3, Miguel Sena‐Esteves3

1 Department of Neurology, University of Massachusetts Medical School, Worcester, Masssachusetts, 2 Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Masssachusetts, 3 Co‐corresponding authors
Publication Name:  Current Protocols in Microbiology
Unit Number:  Unit 14D.5
DOI:  10.1002/9780471729259.mc14d05s29
Online Posting Date:  May, 2013
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Recombinant adeno‐associated virus (rAAV) vectors are great tools for gene transfer due to their ability to mediate long‐term gene expression. rAAVs have been used successfully as gene transfer vehicles in multiple animal models of CNS disorders, and several clinical trials are currently underway. rAAV vectors have been used at various stages of development with no apparent toxicity. There are multiple ways of delivering AAV vectors to the mouse CNS, depending on the stage of development. In neonates, intravascular injections into the facial vein are often used. In adults, direct injections into target regions of the brain are achieved with great spatiotemporal control through stereotaxic surgeries. Recently, discoveries of new AAV vectors with the ability to cross the blood brain barrier have made it possible to target the adult CNS by intravascular injections. Curr. Protoc. Microbiol. 29:14D.5.1‐14D.5.18. © 2013 by John Wiley & Sons, Inc.

Keywords: AAV; intracranial; intravascular; neonate stereotaxic

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Craniotomy and Stereotaxic Injection of AAV Vectors in the Brain of Adult Mice
  • Basic Protocol 2: Tail Vein Injection of AAV Vectors in Adult Mice
  • Basic Protocol 3: Intravenous Delivery of rAAV Vectors to Neonatal Mice
  • Support Protocol 1: Collection and Embedding of Mouse Brain for Histological Analysis
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


Basic Protocol 1: Craniotomy and Stereotaxic Injection of AAV Vectors in the Brain of Adult Mice

  • 0.5 M NaOH, sterile
  • Sterile water
  • Recombinant adeno‐associated virus (rAAV) vector stock
  • 1× phosphate‐buffered saline (PBS), filter sterilized
  • Mouse to be injected
  • Ketamine/xylazine anesthesia solution (see recipe)
  • Ophthalmic ointment (e.g., Puralube, Webster, cat. no. 07‐888‐2572)
  • Povidone‐iodine prep pads
  • Alcohol prep pads, 70% isopropyl alcohol
  • Ketoprofen analgesia solution (see recipe)
  • Stereotaxic frame (Stoelting, cat. no. 51730)
  • Injector (Ultra Micro Pump III, World Precision Instruments)
  • Syringe pump controller (World Precision Instruments, cat. no. SYS‐MICRO4)
  • 10‐µl gastight Hamilton syringe (Hamilton, cat. no. 7653‐01), autoclaved
  • 33‐G steel needle (Hamilton, cat. no. 7762‐06), autoclaved
  • Autoclave pouch for surgical tools
  • 1‐ml insulin syringes with permanent 28‐G needles (Kendal Monoject, cat. no. 1188128012)
  • Small mouse shaver
  • Sterile disposable scalpels (Dynarex, cat. no. 4111)
  • Sterile cotton swabs (Puritan, cat. no. 25‐806 1WC)
  • Stereotaxic Atlas (Paxinos and Franklin, )
  • Hand‐held drill with autoclaved drill bits
  • Sterile wound reflex clip stapler (Kent Scientific, cat. no. INS500345) with sterile 9‐mm wound reflex clips (World Precision Instruments, cat. no. 500346) and clip remover (Kent Scientific, cat. no. INS500347)
  • Circulating‐water warming pad

Basic Protocol 2: Tail Vein Injection of AAV Vectors in Adult Mice

  • Recombinant adeno‐associated virus (rAAV) vector stock
  • 1× phosphate‐buffered saline (PBS), filter sterilized
  • Mouse to be injected
  • Alcohol prep pad, 70% isopropyl alcohol
  • 1‐ml allergy syringe with 27‐G, 3/8‐in. needle (Becton Dickinson, cat. no. 305541)
  • Infrared heat lamp
  • Mouse restrainer for tail vein injection (e.g., Kent Scientific, cat. no. HLD‐MS‐T)
  • Sterile gauze

Basic Protocol 3: Intravenous Delivery of rAAV Vectors to Neonatal Mice

  • Recombinant adeno‐associated virus (rAAV) vector stock
  • 1× phosphate‐buffered saline (PBS), filter sterilized
  • Neonatal mouse to be injected
  • Isofluorane
  • 70% (v/v) isopropyl alcohol
  • 3/10‐cc syringe with 31‐G, 8‐mm‐long needle (e.g., Becton Dickinson, Ultra‐Fine II short needle insulin syringe)
  • Anesthesia chamber for neonate: made from 50‐ml Falcon tube stuffed with tissue paper
  • Sterile gauze

Support Protocol 1: Collection and Embedding of Mouse Brain for Histological Analysis

  • 4% (w/v) paraformaldehyde (PFA) solution (see recipe)
  • 1× phosphate‐buffered saline (PBS)
  • Mouse to be perfused
  • Ketamine/xylazine anesthesia solution (see recipe)
  • 30% (w/v) sucrose in PBS
  • 2‐O‐Methylbutane
  • Dry ice
  • Optimal cutting temperature (OCT) medium (e.g., Thermo Scientific NEG50)
  • Peristalic pump (Fisher, cat. no. 13‐876)
  • Three‐way stopcock
  • Silicone tubing
  • Cannulated needle: scalp vein (butterfly) set with 1/2‐in., 25‐G needle (Exel, cat. no. 26708)
  • Surgical scissors
  • Retractor
  • Flat tweezers
  • Curved hemostatic forceps
  • 15‐ml plastic conical tube
  • Plastic disposable embedding mold (Electron Microscopy Sciences, cat. no. 70182)
NOTE: Perform all steps in a well‐ventilated chemical fume hood.
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Afione, S.A., Conrad, C.K., and Flotte, T.R. 1995. Gene therapy vectors as drug delivery systems. Clin. Pharmacokinet. 28:181‐189.
   Asokan, A., Schaffer, D.V., and Samulski, R.J. 2012. The AAV vector toolkit: Poised at the clinical crossroads. Mol. Ther. 20:699‐708.
   Bankiewicz, K.S., Eberling, J.L., Kohutnicka, M., Jagust, W., Pivirotto, P., Bringas, J., Cunningham, J., Budinger, T.F., and Harvey‐White, J. 2000. Convection‐enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro‐drug approach. Exp. Neurol. 164:2‐14.
   Bell, C.L., Gurda, B.L., Van Vliet, K., Agbandje‐McKenna, M., and Wilson, J.M. 2012. Identification of the galactose binding domain of the adeno‐associated virus serotype 9 capsid. J. Virol. 86:7326‐7333.
   Bevan, A.K., Duque, S., Foust, K.D., Morales, P.R., Braun, L., Schmelzer, L., Chan, C.M., McCrate, M., Chicoine, L.G., Coley, B.D., Porensky, P.N., Kolb, S.J., Mendell, J.R., Burghes, A.H., and Kaspar, B.K. 2011. Systemic gene delivery in large species for targeting spinal cord, brain, and peripheral tissues for pediatric disorders. Mol. Ther. 19:1971‐1980.
   Boutin, S., Monteilhet, V., Veron, P., Leborgne, C., Benveniste, O., Montus, M.F., and Masurier, C. 2010. Prevalence of serum IgG and neutralizing factors against adeno‐associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: Implications for gene therapy using AAV vectors. Hum. Gene Ther. 21:704‐712.
   Burger, C., Gorbatyuk, O.S., Velardo, M.J., Peden, C.S., Williams, P., Zolotukhin, S., Reier, P.J., Mandel, R.J., and Muzyczka, N. 2004. Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol. Ther. 10:302‐317.
   Calcedo, R., Vandenberghe, L.H., Gao, G., Lin, J., and Wilson, J.M. 2009. Worldwide epidemiology of neutralizing antibodies to adeno‐associated viruses. J. Infect. Dis. 199:381‐390.
   Cearley, C.N. and Wolfe, J.H. 2006. Transduction characteristics of adeno‐associated virus vectors expressing cap serotypes 7, 8, 9, and Rh10 in the mouse brain. Mol. Ther. 13:528‐537.
   Cearley, C.N. and Wolfe, J.H. 2007. A single injection of an adeno‐associated virus vector into nuclei with divergent connections results in widespread vector distribution in the brain and global correction of a neurogenetic disease. J. Neurosci. 27:9928‐9940.
   Cearley, C.N., Vandenberghe, L.H., Parente, M.K., Carnish, E.R., Wilson, J.M., and Wolfe, J.H. 2008. Expanded repertoire of AAV vector serotypes mediate unique patterns of transduction in mouse brain. Mol. Ther. 16:1710‐1718.
   Chen, Y.H., Chang, M., and Davidson, B.L. 2009. Molecular signatures of disease brain endothelia provide new sites for CNS‐directed enzyme therapy. Nat. Med. 15:1215‐1218.
   Cotugno, G., Annunziata, P., Tessitore, A., O'Malley, T., Capalbo, A., Faella, A., Bartolomeo, R., O'Donnell, P., Wang, P., Russo, F., Sleeper, M.M., Knox, V.W., Fernandez, S., Levanduski, L., Hopwood, J., De Leonibus, E., Haskins, M., and Auricchio, A. 2011. Long‐term amelioration of feline Mucopolysaccharidosis VI after AAV‐mediated liver gene transfer. Mol. Ther. 19:461‐469.
   Cunningham, J., Oiwa, Y., Nagy, D., Podsakoff, G., Colosi, P., and Bankiewicz, K.S. 2000. Distribution of AAV‐TK following intracranial convection‐enhanced delivery into rats. Cell Transplant. 9:585‐594.
   Cunningham, J., Pivirotto, P., Bringas, J., Suzuki, B., Vijay, S., Sanftner, L., Kitamura, M., Chan, C., and Bankiewicz, K.S. 2008. Biodistribution of adeno‐associated virus type‐2 in nonhuman primates after convection‐enhanced delivery to brain. Mol. Ther. 16:1267‐1275.
   Eberling, J.L., Jagust, W.J., Christine, C.W., Starr, P., Larson, P., Bankiewicz, K.S., and Aminoff, M.J. 2008. Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology 70:1980‐1983.
   Foust, K.D., Nurre, E., Montgomery, C.L., Hernandez, A., Chan, C.M., and Kaspar, B.K. 2009. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat. Biotechnol. 27:59‐65.
   Foust, K.D., Wang, X., McGovern, V.L., Braun, L., Bevan, A.K., Haidet, A.M., Le, T.T., Morales, P.R., Rich, M.M., Burghes, A.H., and Kaspar, B.K. 2010. Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nat. Biotechnol. 28:271‐274.
   Gagliardi, C. and Bunnell, B.A. 2009. Large animal models of neurological disorders for gene therapy. ILAR J. 50:128‐143.
   Gao, G., Vandenberghe, L.H., and Wilson, J.M. 2005. New recombinant serotypes of AAV vectors. Curr. Gene Ther. 5:285‐297.
   Gray, S.J., Matagne, V., Bachaboina, L., Yadav, S., Ojeda, S.R., and Samulski, R.J. 2011. Preclinical differences of intravascular AAV9 delivery to neurons and glia: A comparative study of adult mice and nonhuman primates. Mol. Ther. 19:1058‐1069.
   Hadaczek, P., Mirek, H., Bringas, J., Cunningham, J., and Bankiewicz, K. 2004. Basic fibroblast growth factor enhances transduction, distribution, and axonal transport of adeno‐associated virus type 2 vector in rat brain. Hum. Gene Ther. 15:469‐479.
   Hadaczek, P., Kohutnicka, M., Krauze, M.T., Bringas, J., Pivirotto, P., Cunningham, J., and Bankiewicz, K. 2006. Convection‐enhanced delivery of adeno‐associated virus type 2 (AAV2) into the striatum and transport of AAV2 within monkey brain. Hum. Gene Ther. 17:291‐302.
   Hwu, W.L., Muramatsu, S., Tseng, S.H., Tzen, K.Y., Lee, N.C., Chien, Y.H., Snyder, R.O., Byrne, B.J., Tai, C.H., and Wu, R.M. 2012. Gene therapy for aromatic L‐amino acid decarboxylase deficiency. Sci. Transl. Med. 4:134ra161.
   Janson, C., McPhee, S., Bilaniuk, L., Haselgrove, J., Testaiuti, M., Freese, A., Wang, D.J., Shera, D., Hurh, P., Rupin, J., Saslow, E., Goldfarb, O., Goldberg, M., Larijani, G., Sharrar, W., Liouterman, L., Camp, A., Kolodny, E., Samulski, J., and Leone, P. 2002. Clinical protocol. Gene therapy of Canavan disease: AAV‐2 vector for neurosurgical delivery of aspartoacylase gene (ASPA) to the human brain. Hum. Gene Ther. 13:1391‐1412.
   Kaplitt, M.G., Leone, P., Samulski, R.J., Xiao, X., Pfaff, D.W., O'Malley, K.L., and During, M.J. 1994. Long‐term gene expression and phenotypic correction using adeno‐associated virus vectors in the mammalian brain. Nat. Genet. 8:148‐154.
   Kaplitt, M.G., Feigin, A., Tang, C., Fitzsimons, H.L., Mattis, P., Lawlor, P.A., Bland, R.J., Young, D., Strybing, K., Eidelberg, D., and During, M.J. 2007. Safety and tolerability of gene therapy with an adeno‐associated virus (AAV) borne GAD gene for Parkinson's disease: An open label, phase I trial. Lancet 369:2097‐2105.
   Kells, A.P., Hadaczek, P., Yin, D., Bringas, J., Varenika, V., Forsayeth, J., and Bankiewicz, K.S. 2009. Efficient gene therapy‐based method for the delivery of therapeutics to primate cortex. Proc. Natl. Acad. Sci. U.S.A. 106:2407‐2411.
   Klein, R.L., Dayton, R.D., Leidenheimer, N.J., Jansen, K., Golde, T.E., and Zweig, R.M. 2006. Efficient neuronal gene transfer with AAV8 leads to neurotoxic levels of tau or green fluorescent proteins. Mol. Ther. 13:517‐527.
   Klein, R.L., Dayton, R.D., Tatom, J.B., Henderson, K.M., and Henning, P.P. 2008. AAV8, 9, Rh10, Rh43 vector gene transfer in the rat brain: Effects of serotype, promoter and purification method. Mol. Ther. 16:89‐96.
   Mastakov, M.Y., Baer, K., Xu, R., Fitzsimons, H., and During, M.J. 2001. Combined injection of rAAV with mannitol enhances gene expression in the rat brain. Mol. Ther. 3:225‐232.
   Monteilhet, V., Saheb, S., Boutin, S., Leborgne, C., Veron, P., Montus, M.F., Moullier, P., Benveniste, O., and Masurier, C. 2011. A 10 patient case report on the impact of plasmapheresis upon neutralizing factors against adeno‐associated virus (AAV) types 1, 2, 6, and 8. Mol. Ther. 19:2084‐2091.
   Münch, R.C., Janicki, H., Völker, I., Rasbach, A., Hallek, M., Büning, H., and Buchholz, C.J. 2013. Displaying high‐affinity ligands on adeno‐associated viral vectors enables tumor cell‐specific and safe gene transfer. Mol. Ther. 21:109‐118.
   Muramatsu, S., Fujimoto, K., Kato, S., Mizukami, H., Asari, S., Ikeguchi, K., Kawakami, T., Urabe, M., Kume, A., Sato, T., Watanabe, E., Ozawa, K., and Nakano, I. 2010. A phase I study of aromatic L‐amino acid decarboxylase gene therapy for Parkinson's disease. Mol. Ther. 18:1731‐1735.
   Nguyen, J.B., Sanchez‐Pernaute, R., Cunningham, J., and Bankiewicz, K.S. 2001. Convection‐enhanced delivery of AAV‐2 combined with heparin increases TK gene transfer in the rat brain. Neuroreport 12:1961‐1964.
   Paxinos, G. and Franklin, K.B.J. 2001. The Mouse Brain in Stereotaxic Coordinates, 2nd ed. Academic Press, San Diego.
   Rapti, K., Louis‐Jeune, V., Kohlbrenner, E., Ishikawa, K., Ladage, D., Zolotukhin, S., Hajjar, R.J., and Weber, T. 2012. Neutralizing antibodies against AAV serotypes 1, 2, 6, and 9 in sera of commonly used animal models. Mol. Ther. 20:73‐83.
   Salegio, E.A., Samaranch, L., Kells, A.P., Mittermeyer, G., San Sebastian, W., Zhou, S., Beyer, J., Forsayeth, J., and Bankiewicz, K.S. 2013. Axonal transport of adeno‐associated viral vectors is serotype‐dependent. Gene Ther. 20:348‐352.
   Samaranch, L., Salegio, E.A., San Sebastian, W., Kells, A.P., Foust, K.D., Bringas, J.R., Lamarre, C., Forsayeth, J., Kaspar, B.K., and Bankiewicz, K.S. 2012. Adeno‐associated virus serotype 9 transduction in the central nervous system of nonhuman primates. Hum. Gene Ther. 23:382‐389.
   Shen, S., Bryant, K.D., Brown, S.M., Randell, S.H., and Asokan, A. 2011. Terminal N‐linked galactose is the primary receptor for adeno‐associated virus 9. J. Biol. Chem. 286:13532‐13540.
   Snyder, B.R., Gray, S.J., Quach, E.T., Huang, J.W., Leung, C.H., Samulski, R.J., Boulis, N.M., and Federici, T. 2011. Comparison of adeno‐associated viral vector serotypes for spinal cord and motor neuron gene delivery. Hum. Gene Ther. 22:1129‐1135.
   Sondhi, D., Hackett, N.R., Peterson, D.A., Stratton, J., Baad, M., Travis, K.M., Wilson, J.M., and Crystal, R.G. 2007. Enhanced survival of the LINCL mouse following CLN2 gene transfer using the rh.10 rhesus macaque‐derived adeno‐associated virus vector. Mol. Ther. 15:481‐491.
   van der Marel, S., Comijn, E.M., Verspaget, H.W., van Deventer, S., van den Brink, G.R., Petry, H., Hommes, D.W., and Ferreira, V. 2011. Neutralizing antibodies against adeno‐associated viruses in inflammatory bowel disease patients: Implications for gene therapy. Inflamm. Bowel Dis. 17:2436‐2442.
   Worgall, S., Sondhi, D., Hackett, N.R., Kosofsky, B., Kekatpure, M.V., Neyzi, N., Dyke, J.P., Ballon, D., Heier, L., Greenwald, B.M., Christos, P., Mazumdar, M., Souweidane, M.M., Kaplitt, M.G., and Crystal, R.G. 2008. Treatment of late infantile neuronal ceroid lipofuscinosis by CNS administration of a serotype 2 adeno‐associated virus expressing CLN2 cDNA. Hum. Gene Ther. 19:463‐474.
   Xie, J., Xie, Q., Zhang, H., Ameres, S.L., Hung, J.H., Su, Q., He, R., Mu, X., Seher Ahmed, S., Park, S., Kato, H., Li, C., Mueller, C., Mello, C.C., Weng, Z., Flotte, T.R., Zamore, P.D., and Gao, G. 2011. MicroRNA‐regulated, systemically delivered rAAV9: A step closer to CNS‐restricted transgene expression. Mol. Ther. 19:526‐535.
   Yang, B., Cao, C., Zhang, H., Su, Q., Ahmed, S.S., Zhong, L., He, R., Sena‐Esteves, M., Flotte, T.R., Brown, R., Xu, Z., and Guangping, G. 2012. Intravasuclar delivery of rAAVrh.8 generates widespreading transduction of neuronal and glial cell types in the adult mouse central nervous system. American Society of Gene & Cell Therapy, 15th Annual Meeting. May 16‐19, 2012, Philadelphia, Penn.
   Zhang, H., Yang, B., Mu, X., Ahmed, S.S., Su, Q., He, R., Wang, H., Mueller, C., Sena‐Esteves, M., Brown, R., Xu, Z., and Gao, G. 2011. Several rAAV vectors efficiently cross the blood‐brain barrier and transduce neurons and astrocytes in the neonatal mouse central nervous system. Mol. Ther. 19:1440‐1448.
PDF or HTML at Wiley Online Library