HT‐SPOTi: A Rapid Drug Susceptibility Test (DST) to Evaluate Antibiotic Resistance Profiles and Novel Chemicals for Anti‐Infective Drug Discovery

Cynthia A. Danquah1, Arundhati Maitra1, Simon Gibbons2, Jane Faull3, Sanjib Bhakta3

1 These authors contributed equally, 2 Research Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, London, 3 Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London
Publication Name:  Current Protocols in Microbiology
Unit Number:  Unit 17.8
DOI:  10.1002/9780471729259.mc1708s40
Online Posting Date:  February, 2016
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Antibiotic resistance is one of the major threats to global health and well‐being. The past decade has seen an alarming rise in the evolution and spread of drug‐resistant strains of pathogenic microbes. The emergence of extensively drug resistant (XDR) strains of Mycobacterium tuberculosis and antimicrobial resistance among the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter species) as well as fungal pathogens (such as certain species of Candida, Aspergillus, Cryptococcus, and Trichophyton) poses a significant 21st century scientific challenge. With an extremely limited arsenal of efficacious antibiotics, techniques that can (a) identify novel antimicrobials and (b) detect antimicrobial resistance are becoming increasingly important. In this article, we illustrate the HT‐SPOTi, an assay that is principally based on the growth of an organism on agar medium containing a range of different concentrations of drugs or inhibitors. The simple methodology makes this assay ideal for evaluating novel antimicrobial compounds as well as profiling an organism's antibiotic resistance profile. © 2016 by John Wiley & Sons, Inc.

Keywords: drug susceptibility testing (DST); HT‐SPOTi; antimicrobial resistance; whole‐cell phenotypic evaluation; infectious diseases; diagnosis; drug discovery

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Strategic Planning
  • Basic Protocol 1: HT‐SPOTi as a Drug Susceptibility Test
  • Basic Protocol 2: HT‐SPOTi for Novel Anti‐Infective Drug Discovery
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: HT‐SPOTi as a Drug Susceptibility Test

  Materials
  • Sterile Middlebrook 7H10 (MB7H10) agar medium (unit 10.1; Larsen et al., ) with 0.5% (v/v) glycerol, supplemented with 10% (v/v) (OADC, BD Difco, cat. no. 212351)
  • Sterile dimethyl sulfoxide (DMSO), double‐distilled water or any other solvent
  • Working stock of drugs (2 or 5 mg/ml) dissolved in a suitable solvent (see Strategic Planning)
  • 70% ethanol
  • Clinical sample (in this case, sputum)
  • MycoDDR reagent kit (Immy)
  • Sterile Middlebrook 7H9 (MB7H9) broth medium (unit 10.1; Larsen et al., ) with 0.5% (v/v) glycerol and 0.2% (v/v) Tween 80 supplemented with 10% (v/v) OADC; BD Difco, cat. no. 212351)
  • Steam bath/water bath/microwave
  • Microcentrifuge tubes or darkened glass vials for storing drug stocks
  • PCR half‐skirted 96‐well plates
  • Standard 96‐well plates
  • Multidrop Combi Reagent Dispenser (Thermo Scientific)
  • Single‐channel (2 to 20 μl and 100 to 1000 μl) and multichannel (2 to 20 μl) pipettors with sterile tips
  • Centrifuge
  • Spectrophotometer
  • Digital camera
  • Additional reagents and equipment for culture of M. tuberculosis (Larsen et al., )

Basic Protocol 2: HT‐SPOTi for Novel Anti‐Infective Drug Discovery

  Materials
  • Bacterial sample (M. aurum in this protocol)
  • Additional reagents and equipment for HT‐SPOTi ( protocol 1)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Anderton, M.C., Bhakta, S., Besra, G.S., Jeavons, P., Eltis, L.D., and Sim, E. 2006. Characterization of the putative operon containing arylamine N‐acetyltransferase (nat) in Mycobacterium bovis BCG. Mol. Microbiol. 59:181–192. doi: 10.1111/j.1365‐2958.2005.04945.x.
  Bartlett, J.G. 2011. Diagnostic tests for agents of community‐acquired pneumonia. Clin. Infect. Dis. 52:S296‐S304. doi: 10.1093/cid/cir045.
  Belard, S., Heuvelings, C.C., Janssen, S., and Grobusch, M.P. 2015. Bedaquiline for the treatment of drug‐resistant tuberculosis. Expert Rev. Anti Infect. Ther. 13:535–553. doi: 10.1586/14787210.2015.1021785.
  Bhakta, S., Besra, G.S., Upton, A.M., Parish, T., Sholto‐Douglas‐Vernon, C., Gibson, K.J., Knutton, S., Gordon, S., Dasilva, R.P., Anderton, M.C., and Sim, E. 2004. Arylamine N‐acetyltransferase is required for synthesis of mycolic acids and complex lipids in Mycobacterium bovis BCG and represents a novel drug target. J. Exp. Med. 199:1191–1199. doi: 10.1084/jem.20031956.
  Bragginton, E.C. and Piddock, L.J. 2014. UK and European Union public and charitable funding from 2008 to 2013 for bacteriology and antibiotic research in the UK: An observational study. Lancet Infect Dis. 14:857–868. doi: 10.1016/S1473‐3099(14)70825‐4.
  Burnett, L.C., Lunn, G. and Coico, R. 2009. Biosafety: Guidelines for working with pathogenic and infectious microorganisms. Curr. Protoc. Microbiol. 13:1A.1.1–1A.1.14.
  Candelaria, W., Maneclang, K., and Magee, C. 2014. Clinical evaluation of IMMY Myco DDR‐digestion/decontamination reagents for the recovery of Mycobacterium. 114th Annual Meeting of the American Society of Microbiology.[http://www.immy.com/wp‐content/uploads/2013/08/MaricopaPoster_rev053014.pdf].
  Carlet, J., Pulcini, C., and Piddock, L.J. 2014. Antibiotic resistance: A geopolitical issue. Clin. Microbiol. Infect. 20:949–953. doi: 10.1111/1469‐0691.12767.
  Cosgrove, S.E., Qi, Y., Kaye, K.S., Harbarth, S., Karchmer, A.W., and Carmeli, Y. 2005. The impact of methicillin resistance in Staphylococcus aureus bacteremia on patient outcomes: Mortality, length of stay, and hospital charges. Infect. Control Hosp. Epidemiol. 26:166–174. doi: 10.1086/502522.
  Engemann, J.J., Carmeli, Y., Cosgrove, S.E., Fowler, V.G., Bronstein, M.Z., Trivette, S.L., Briggs, J.P., Sexton, D.J., and Kaye, K.S. 2003. Adverse clinical and economic outcomes attributable to methicillin resistance among patients with Staphylococcus aureus surgical site infection. Clin Infect. Dis. 36:592–598. doi: 10.1086/367653.
  Evangelopoulos, D. and Bhakta, S. 2010. Rapid methods for testing inhibitors of mycobacterial growth. Methods Mol. Biol. 642:193–201. doi: 10.1007/978‐1‐60327‐279‐7_15.
  Ginocchio, C.C. 2011. Strengths and weaknesses of FDA‐approved/cleared diagnostic devices for the molecular detection of respiratory pathogens. Clin Infect. Dis. 52:S312‐S325. doi: 10.1093/cid/cir046.
  Gould, I.M. and Bal, A.M. 2013. New antibiotic agents in the pipeline and how they can help overcome microbial resistance. Virulence 4:185–191. doi: 10.4161/viru.22507.
  Grundmann, H., Aires‐de‐Sousa, M., Boyce, J., and Tiemersma, E. 2006. Emergence and resurgence of methicillin‐resistant Staphylococcus aureus as a public‐health threat. Lancet 368:874–885. doi: 10.1016/S0140‐6736(06)68853‐3.
  Gupta, A. and Bhakta, S. 2012. An integrated surrogate model for screening of drugs against Mycobacterium tuberculosis. J. Antimicrob. Chemother. 67:1380–1391. doi: 10.1093/jac/dks056.
  Gupta, A., Bhakta, S., Kundu, S., Gupta, M., Srivastava, B.S., and Srivastava, R. 2009. Fast‐growing, non‐infectious and intracellularly surviving drug‐resistant Mycobacterium aurum: A model for high‐throughput antituberculosis drug screening. J. Antimicrob. Chemother. 64:774–781. doi: 10.1093/jac/dkp279.
  Guzman, J.D., Evangelopoulos, D., Gupta, A., Prieto, J.M., Gibbons, S., and Bhakta, S. 2012. Antimycobacterials from Lovage Root (Ligusticum officinale Koch). Phytother Res.27:993–998.
  Guzman, J.D., Evangelopoulos, D., Gupta, A., Birchall, K., Mwaigwisya, S., Saxty, B., McHugh, T.D., Gibbons, S., Malkinson, J., and Bhakta, S. 2013. Antitubercular specific activity of ibuprofen and the other 2‐arylpropanoic acids using the HT‐SPOTi whole‐cell phenotypic assay. BMJ Open 3:e002672. doi: 10.1136/bmjopen‐2013‐002672.
  Guzman, J.D., Gupta, A., Evangelopoulos, D., Basavannacharya, C., Pabon, L.C., Plazas, E.A., Munoz, D.R., Delgado, W.A., Cuca, L.E., Ribon, W., Gibbons, S., and Bhakta, S. 2010. Anti‐tubercular screening of natural products from Colombian plants: 3‐methoxynordomesticine, an inhibitor of MurE ligase of Mycobacterium tuberculosis. J. Antimicrob. Chemother. 65:2101–2107. doi: 10.1093/jac/dkq313.
  Larsen, M.H., Biermann, K., and Jacobs, W.R. 2007. Laboratory maintenance of Mycobacterium tuberculosis. Curr. Protoc. Microbiol. 6:10A.1.1–10A.1.8.
  Lawn, S.D. and Zumla, A.I. 2011. Tuberculosis. Lancet 378:57–72. doi: 10.1016/S0140‐6736(10)62173‐3.
  Lawn, S.D. and Zumla, A.I. 2012. Diagnosis of extrapulmonary tuberculosis using the Xpert((R)) MTB/RIF assay. Expert Rev. Anti. Infect. Ther. 10:631–635. doi: 10.1586/eri.12.43.
  Laxminarayan, R., Duse, A., Wattal, C., Zaidi, A.K., Wertheim, H.F., Sumpradit, N., Vlieghe, E., Hara, G.L., Gould, I.M., Goossens, H., Greko, C., So, A.D., Bigdeli, M., Tomson, G., Woodhouse, W., Ombaka, E., Peralta, A.Q., Qamar, F.N., Mir, F., Kariuki, S., Bhutta, Z.A., Coates, A., Bergstrom, R., Wright, G.D., Brown, E.D., and Cars, O. 2013. Antibiotic resistance‐the need for global solutions. Lancet Infect. Dis. 13:1057–1098. doi: 10.1016/S1473‐3099(13)70318‐9.
  Liu, T., Osman, K., Kaatz, G.W., Gibbons, S., and Mu, Q. 2013. Antibacterial sesquiterpenoid derivatives from Ferula ferulaeoides. Planta. Med. 79:701–706. doi: 10.1055/s‐0032‐1328461.
  Madikane, V.E., Bhakta, S., Russell, A.J., Campbell, W.E., Claridge, T.D., Elisha, B.G., Davies, S.G., Smith, P., and Sim, E. 2007. Inhibition of mycobacterial arylamine N‐acetyltransferase contributes to anti‐mycobacterial activity of Warburgia salutaris. Bioorg. Med. Chem. 15:3579–3586. doi: 10.1016/j.bmc.2007.02.011.
  Markarian, S., Evangelopoulos, D., Harutyunyan, L., Pepoyan, E., Guzman, J., McHugh, T., and Bhakta, S. 2012. The properties of solutions of isoniazid in water and dimethylsulfoxide. J. Solution Chem. 41:1462–1476. doi: 10.1007/s10953‐012‐9883‐7.
  Matteelli, A., Roggi, A., and Carvalho, A.C. 2014. Extensively drug‐resistant tuberculosis: Epidemiology and management. Clin Epidemiol. 6:111–118. doi: 10.2147/CLEP.S35839.
  Mcnerney, R. and Zumla, A. 2015. Impact of the Xpert MTB/RIF diagnostic test for tuberculosis in countries with a high burden of disease. Curr. Opin. Pulm. Med. 21:304–308. doi: 10.1097/MCP.0000000000000161.
  O'Brien, J., Wilson, I., Orton, T., and Pognan, F. 2000. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. 267:5421–5426. doi: 10.1046/j.1432‐1327.2000.01606.x.
  O'Donnell, G., Poeschl, R., Zimhony, O., Gunaratnam, M., Moreira, J.B., Neidle, S., Evangelopoulos, D., Bhakta, S., Malkinson, J.P., Boshoff, H.I., Lenaerts, A., and Gibbons, S. 2009a. Bioactive pyridine‐N‐oxide disulfides from Allium stipitatum. J. Nat. Prod. 72:360–365. doi: 10.1021/np800572r.
  O'Donnell, G., Poeschl, R., Zimhony, O., Gunaratnam, M., Moreira, J.B., Neidle, S., Evangelopoulos, D., Bhakta, S., Malkinson, J.P., Boshoff, H.I., Lenaerts, A., and Gibbons, S. 2009b. Bioactive pyridine‐N‐oxide disulfides from Allium stipitatum. J. Nat. Prod. 72:360–365. doi: 10.1021/np800572r.
  Osman, K., Evangelopoulos, D., Basavannacharya, C., Gupta, A., McHugh, T.D., Bhakta, S., and Gibbons, S. 2012. An antibacterial from Hypericum acmosepalum inhibits ATP‐dependent MurE ligase from Mycobacterium tuberculosis. Int. J. Antimicrob. Agents. 39:124–129. doi: 10.1016/j.ijantimicag.2011.09.018.
  Peng, L., Wang, B., and Ren, P. 2005. Reduction of MTT by flavonoids in the absence of cells. Colloids Surf B Biointerfaces 45:108–111. doi: 10.1016/j.colsurfb.2005.07.014.
  Piddock, L.J. 2013. Antibiotic action: Helping deliver action plans and strategies. Lancet Infect Dis. 13:1009–1011. doi: 10.1016/S1473‐3099(13)70299‐8.
  Rizi, K., Murdan, S., Danquah, C.A., Faull, J., and Bhakta, S. 2015. Development of a rapid, reliable and quantitative method—"SPOTi" for testing antifungal efficacy. J. Microbiol. Methods 117:36–40. doi: 10.1016/j.mimet.2015.07.005.
  Shah, N.S., Wright, A., Bai, G.H., Barrera, L., Boulahbal, F., Martin‐Casabona, N., Drobniewski, F., Gilpin, C., Havelkova, M., Lepe, R., Lumb, R., Metchock, B., Portaels, F., Rodrigues, M.F., Rusch‐Gerdes, S., van Deun, A., Vincent, V., Laserson, K., Wells, C., and Cegielski, J.P. 2007. Worldwide emergence of extensively drug‐resistant tuberculosis. Emerg. Infect. Dis. 13:380–387. doi: 10.3201/eid1303.061400.
  Sommers, H.M., Morello, J.A., and Macclatchy, J.K. 1983. Laboratory Diagnosis of the Mycobacterioses. American Society for Microbiology.
  Srinivasan, A., Dick, J.D., and Perl, T.M. 2002. Vancomycin resistance in staphylococci. Clin. Microbiol. Rev. 15:430–438. doi: 10.1128/CMR.15.3.430‐438.2002.
  Talbot, G.H., Bradley, J., Edwards, J.E., Jr., Gilbert, D., Scheld, M., Bartlett, J.G., and antimicrobial availability task force of the infectious diseases society of, A. 2006. Bad bugs need drugs: An update on the development pipeline from the Antimicrobial Availability Task Force of the Infectious Diseases Society of America. Clin. Infect. Dis. 42:657–668. doi: 10.1086/499819.
  van Klingeren, B., Dessens‐Kroon, M., van der Laan, T., Kremer, K., and van Soolingen, D. 2007. Drug susceptibility testing of Mycobacterium tuberculosis complex by use of a high‐throughput, reproducible, absolute concentration method. J. Clin. Microbiol. 45:2662–2668. doi: 10.1128/JCM.00244‐07.
  Vasoo, S., Barreto, J.N., and Tosh, P.K. 2015. Emerging issues in gram‐negative bacterial resistance: An update for the practicing clinician. Mayo. Clin. Proc. 90:395–403. doi: 10.1016/j.mayocp.2014.12.002.
  Walsh, T.R. and Toleman, M.A. 2012. The emergence of pan‐resistant Gram‐negative pathogens merits a rapid global political response. J. Antimicrob. Chemother. 67:1–3. doi: 10.1093/jac/dkr378.
  Wube, A., Guzman, J.D., Hufner, A., Hochfellner, C., Blunder, M., Bauer, R., Gibbons, S., Bhakta, S., and Bucar, F. 2012. Synthesis and antibacterial evaluation of a new series of N‐Alkyl‐2‐alkynyl/(E)‐alkenyl‐4‐(1H)‐quinolones. Molecules 17:8217–8240. doi: 10.3390/molecules17078217.
  Zhao, J., Evangelopoulos, D., Bhakta, S., Gray, A.I., and Seidel, V. 2014. Antitubercular activity of Arctium lappa and Tussilago farfara extracts and constituents. J. Ethnopharmacol. 155:796–800. doi: 10.1016/j.jep.2014.06.034.
  Zumla, A., Maeurer, M., Marais, B., Chakaya, J., Wejse, C., Lipman, M., McHugh, T.D., and Petersen, E. 2015b. Commemorating World Tuberculosis Day 2015. Int. J. Infect. Dis. 32:1–4. doi: 10.1016/j.ijid.2015.01.009.
  Zumla, A.I., Gillespie, S.H., Hoelscher, M., Philips, P.P., Cole, S.T., Abubakar, I., McHugh, T.D., Schito, M., Maeurer, M., and Nunn, A.J. 2014. New antituberculosis drugs, regimens, and adjunct therapies: Needs, advances, and future prospects. Lancet Infect. Dis. 14:327–340. doi: 10.1016/S1473‐3099(13)70328‐1.
  Zumla, A., Chakaya, J., Centis, R., D'Ambrosio, L., Mwaba, P., Bates, M., Kapata, N., Nyirenda, T., Chanda, D., Mfinanga, S., Hoelscher, M., Maeurer, M., and Migliori, G.B. 2015a. Tuberculosis treatment and management–an update on treatment regimens, trials, new drugs, and adjunct therapies. Lancet Respir Med, 3:220–234. doi: 10.1016/S2213‐2600(15)00063‐6.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library