Progress in Vaccine Development

Peter Michael Moyle1

1 School of Pharmacy, the University of Queensland, Woolloongabba
Publication Name:  Current Protocols in Microbiology
Unit Number:  Unit 18.1
DOI:  10.1002/9780471729259.mc1801s36
Online Posting Date:  February, 2015
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Vaccination has a proven record as one of the most effective medical approaches to prevent the spread of infectious diseases. Traditional vaccine approaches involve the administration of whole killed or weakened microorganisms to stimulate protective immune responses. Such approaches deliver many microbial components, some of which contribute to protective immunity, and assist in guiding the type of immune response that is elicited. Despite their impeccable record, these approaches have failed to yield vaccines for many important infectious organisms. This has prompted a move towards more defined vaccines (‘subunit vaccines’), where individual protective components are administered. This unit provides an overview of the components that are used for the development of modern vaccines including: an introduction to different vaccine types (whole organism, protein/peptide, polysaccharide, conjugate, and DNA vaccines); techniques for identifying subunit antigens; vaccine delivery systems; and immunostimulatory agents (‘adjuvants’), which are fundamental for the development of effective subunit vaccines. © 2015 by John Wiley & Sons, Inc.

Keywords: adjuvants; antigen identification; conjugate vaccines; DNA vaccines; peptide vaccines; polysaccharide vaccines; recombinant vaccines; subunit vaccines; Toll‐like receptors

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Whole Organism Vaccine Approaches
  • Subunit Vaccine Approaches
  • Methods for the Identification of Vaccine Antigens
  • Development of Subunit Vaccine Formulations
  • Summary
  • Acknowledgements
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Abdel‐Aal, A.B., Lakshminarayanan, V., Thompson, P., Supekar, N., Bradley, J.M., Wolfert, M.A., Cohen, P.A., Gendler, S.J., and Boons, G.J. 2014. Immune and anticancer responses elicited by fully synthetic aberrantly glycosylated MUC1 tripartite vaccines modified by a TLR2 or TLR9 agonist. ChemBioChem 15:1508‐1513.
  Aithal, A., Sharma, A., Joshi, S., Raghava, G.P., and Varshney, G.C. 2012. PolysacDB: a database of microbial polysaccharide antigens and their antibodies. PLoS One 7:e34613.
  Alexander, J., Sidney, J., Southwood, S., Ruppert, J., Oseroff, C., Maewal, A., Snoke, K., Serra, H.M., Kubo, R.T., Sette, A., and Grey, H.M. 1994. Development of high potency universal DR‐restricted helper epitopes by modification of high affinity DR‐blocking peptides. Immunity 1:751‐761.
  Arnon, R. 2011. Overview of vaccine strategies. In Vaccine Design: Innovative Approaches and Novel Strategies (R. Rappuoli and F. Bagnoli, eds.) pp. 1‐19. Caister Academic Press, Norfolk, U.K.
  Bachmann, M.F. and Jennings, G.T. 2010. Vaccine delivery: A matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 10:787‐796.
  Barry, M.A., Lai, W.C., and Johnston, S.A. 1995. Protection against mycoplasma infection using expression‐library immunization. Nature 377:632‐635.
  Barry, M.A., Howell, D.P., Andersson, H.A., Chen, J.L., and Singh, R.A. 2004. Expression library immunization to discover and improve vaccine antigens. Immunol. Rev. 199:68‐83.
  Basto, A.P., Piedade, J., Ramalho, R., Alves, S., Soares, H., Cornelis, P., Martins, C., and Leitao, A. 2012. A new cloning system based on the OprI lipoprotein for the production of recombinant bacterial cell wall‐derived immunogenic formulations. J. Biotechnol. 157:50‐63.
  Bensi, G., Mora, M., Tuscano, G., Biagini, M., Chiarot, E., Bombaci, M., Capo, S., Falugi, F., Manetti, A.G., Donato, P., Swennen, E., Gallotta, M., Garibaldi, M., Pinto, V., Chiappini, N., Musser, J.M., Janulczyk, R., Mariani, M., Scarselli, M., Telford, J.L., Grifantini, R., Norais, N., Margarit, I., and Grandi, G. 2012. Multi high‐throughput approach for highly selective identification of vaccine candidates: The Group A Streptococcus case. Mol. Cell. Proteomics 11:M111.015693.
  Berti, F. and Adamo, R. 2013. Recent mechanistic insights on glycoconjugate vaccines and future perspectives. ACS Chem. Biol. 8:1653‐1663.
  Blander, J.M. and Sander, L.E. 2012. Beyond pattern recognition: five immune checkpoints for scaling the microbial threat. Nat. Rev. Immunol. 12:215‐225.
  Boato, F., Thomas, R.M., Ghasparian, A., Freund‐Renard, A., Moehle, K., and Robinson, J.A. 2007. Synthetic virus‐like particles from self‐assembling coiled‐coil lipopeptides and their use in antigen display to the immune system. Angew. Chem. Int. Ed. 46:9015‐9018.
  Borodovsky, M. and Lomsadze, A. 2014. Gene identification in prokaryotic genomes, phages, metagenomes, and EST sequences with GeneMarkS suite. Curr. Protoc. Microbiol. 32:1E.7.1‐1E.7.17.
  Brito, L.A., Malyala, P., and O'Hagan, D.T. 2013. Vaccine adjuvant formulations: A pharmaceutical perspective. Sem. Immunol. 25:130‐145.
  Broker, M., Costantino, P., DeTora, L., McIntosh, E.D., and Rappuoli, R. 2011. Biochemical and biological characteristics of cross‐reacting material 197 (CRM197), a non‐toxic mutant of diphtheria toxin: use as a conjugation protein in vaccines and other potential clinical applications. Biologicals 39:195‐204.
  Cafardi, V., Telford, J.L., and Serruto, D. 2013. Bacterial genomes and vaccine design. In Immunomic Discovery of Adjuvants and Candidate Subunit Vaccines, Vol. 5 (D.R. Flower and Y. Perrie, eds.) pp. 13‐38. Springer, New York.
  Cai, X., Chiu, Y.H., and Chen, Z.J. 2014. The cGAS‐cGAMP‐STING pathway of cytosolic DNA sensing and signaling. Mol. Cell 54:289‐296.
  Centers for Disease Control and Prevention. 2012. Epidemiology and Prevention of Vaccine‐Preventable Diseases, 12th ed. Public Health Foundation, Washington, D.C.
  Chen, H.W., Liu, S.J., Liu, H.H., Kwok, Y., Lin, C.L., Lin, L.H., Chen, M.Y., Tsai, J.P., Chang, L.S., Chiu, F.F., Lai, L.W., Lian, W.C., Yang, C.Y., Hsieh, S.Y., Chong, P., and Leng, C.H. 2009. A novel technology for the production of a heterologous lipoprotein immunogen in high yield has implications for the field of vaccine design. Vaccine 27:1400‐1409.
  Chua, B.Y., Zeng, W., and Jackson, D.C. 2008. Synthesis of toll‐like receptor‐2 targeting lipopeptides as self‐adjuvanting vaccines. Methods Mol. Biol. 494:247‐261.
  Cohn, L. and Delamarre, L. 2014. Dendritic cell‐targeted vaccines. Front. Immunol. 5:255.
  Colaco, C.A., Bailey, C.R., Walker, K.B., and Keeble, J. 2013. Heat shock proteins: Stimulators of innate and acquired immunity. Biomed Res. Int. Article ID 461230. doi: 10.1155/2013/461230
  Croft, N.P. and Purcell, A.W. 2011. Peptidomimetics: Modifying peptides in the pursuit of better vaccines. Expert Rev. Vaccines 10:211‐226.
  Curiel, T.J., Morris, C., Brumlik, M., Landry, S.J., Finstad, K., Nelson, A., Joshi, V., Hawkins, C., Alarez, X., Lackner, A., and Mohamadzadeh, M. 2004. Peptides identified through phage display direct immunogenic antigen to dendritic cells. J. Immunol. 172:7425‐7431.
  Datta, S.K., Cho, H.J., Takabayashi, K., Horner, A.A., and Raz, E. 2004. Antigen‐immunostimulatory oligonucleotide conjugates: mechanisms and applications. Immunol. Rev. 199:217‐226.
  Debbink, K., Costantini, V., Swanstrom, J., Agnihothram, S., Vinjé, J., Baric, R. and Lindesmith, L. 2013. Human norovirus detection and production, quantification, and storage of virus‐like particles. Curr. Protoc. Microbiol. 31:15K.1.1‐15K.1.45.
  De Groot, A.S., Ardito, M., McClaine, E.M., Moise, L., and Martin, W.D. 2009. Immunoinformatic comparison of T‐cell epitopes contained in novel swine‐origin influenza A (H1N1) virus with epitopes in 2008‐2009 conventional influenza vaccine. Vaccine 27:5740‐5747.
  Delany, I., Rappuoli, R., and Seib, K.L. 2013. Vaccines, reverse vaccinology, and bacterial pathogenesis. Cold Spring Harb. Perspect. Med. 3:a012476.
  Demotz, S., Barbey, C., Corradin, G., Amoroso, A., and Lanzavecchia, A. 1993. The set of naturally processed peptides displayed by DR molecules is tuned by polymorphism of residue 86. Eur. J. Immunol. 23:425‐432.
  Desmond, A., Case, A., Yi, K., Smallshaw, J., Collins, A., Dye, K., Mapes, K., Saherwala, A., Chen, J., Tran, H., Connolly, M., Zuckermann, R., Chirayil, S., Luebke, K., Astle, J., Reddy, M., Kodadek, T., and Vitetta, E. 2013. The development of a novel anti‐peptoid antibody for a peptoid‐based vaccine platform. J. Immunol. 190:178.177.
  Donati, C. and Rappuoli, R. 2013. Reverse vaccinology in the 21st century: Improvements over the original design. Ann. N.Y. Acad. Sci. 1285:115‐132.
  Dormitzer, P.R., Grandi, G., and Rappuoli, R. 2012. Structural vaccinology starts to deliver. Nat. Rev. Microbiol. 10:807‐813.
  Erdile, L.F., Brandt, M.A., Warakomski, D.J., Westrack, G.J., Sadziene, A., Barbour, A.G., and Mays, J.P. 1993. Role of attached lipid in immunogenicity of Borrelia burgdorferi OspA. Infect. Immun. 61:81‐90.
  Etz, H., Minh, D.B., Henics, T., Dryla, A., Winkler, B., Triska, C., Boyd, A.P., Sollner, J., Schmidt, W., von Ahsen, U., Buschle, M., Gill, S.R., Kolonay, J., Khalak, H., Fraser, C.M., von Gabain, A., Nagy, E., and Meinke, A. 2002. Identification of in vivo expressed vaccine candidate antigens from Staphylococcus aureus. Proc. Natl. Acad. Sci. U.S.A. 99:6573‐6578.
  Evans, M.C. 2008. Recent advances in immunoinformatics: Application of in silico tools to drug development. Curr. Opin. Drug Discov. Dev. 11:233‐241.
  Fagan, V., Toth, I., and Simerska, P. 2014. Convergent synthetic methodology for the construction of self‐adjuvanting lipopeptide vaccines using a novel carbohydrate scaffold. Beilstein J. Org. Chem. 10:1741‐1748.
  Fernando, G.J., Chen, X., Primiero, C.A., Yukiko, S.R., Fairmaid, E.J., Corbett, H.J., Frazer, I.H., Brown, L.E., and Kendall, M.A. 2012. Nanopatch targeted delivery of both antigen and adjuvant to skin synergistically drives enhanced antibody responses. J. Control. Rel. 159:215‐221.
  Ferraro, B., Morrow, M.P., Hutnick, N.A., Shin, T.H., Lucke, C.E., and Weiner, D.B. 2011. Clinical applications of DNA vaccines: current progress. Clin. Infect. Dis. 53:296‐302.
  Finco, O. and Rappuoli, R. 2014. Designing vaccines for the twenty‐first century society. Front. Immunol. 5:12. doi: 10.3389/fimmu.2014.00012
  Freitas, E.B., Henriques, A.M., Fevereiro, M., Prazeres, D.M., and Monteiro, G.A. 2014. Enhancement of DNA vaccine efficacy by intracellular targeting strategies. Methods Mol. Biol. 1143:33‐59.
  Fritzer, A., Senn, B.M., Minh, D.B., Hanner, M., Gelbmann, D., Noiges, B., Henics, T., Schulze, K., Guzman, C.A., Goodacre, J., von Gabain, A., Nagy, E., and Meinke, A.L. 2010. Novel conserved group A streptococcal proteins identified by the antigenome technology as vaccine candidates for a non‐M protein‐based vaccine. Infect. Immun. 78:4051‐4067.
  Gebril, A., Alsaadi, M., Acevedo, R., Mullen, A.B., and Ferro, V.A. 2012. Optimizing efficacy of mucosal vaccines. Expert Rev. Vaccines 11:1139‐1155.
  Giefing, C., Meinke, A.L., Hanner, M., Henics, T., Bui, M.D., Gelbmann, D., Lundberg, U., Senn, B.M., Schunn, M., Habel, A., Henriques‐Normark, B., Ortqvist, A., Kalin, M., von Gabain, A., and Nagy, E. 2008. Discovery of a novel class of highly conserved vaccine antigens using genomic scale antigenic fingerprinting of pneumococcus with human antibodies. J. Exp. Med. 205:117‐131.
  Giefing, C., Nagy, E., and von Gabain, A. 2009. The antigenome: from protein subunit vaccines to antibody treatments of bacterial infections? Adv. Exp. Med. Biol. 655:90‐117.
  Gilleron, M., Stenger, S., Mazorra, Z., Wittke, F., Mariotti, S., Bohmer, G., Prandi, J., Mori, L., Puzo, G., and De Libero, G. 2004. Diacylated sulfoglycolipids are novel mycobacterial antigens stimulating CD1‐restricted T cells during infection with Mycobacterium tuberculosis. J. Exp. Med. 199:649‐659.
  Grandi, G. and Nagy, E. 2012. Finding protective bacterial antigens. In Development of Novel Vaccines (A. von Gabain and C. Klade, eds.) pp. 27‐44. Springer, New York.
  Guy, B., Saville, M., and Lang, J. 2010. Development of Sanofi Pasteur tetravalent dengue vaccine. Hum. Vaccines 6:696‐705.
  Heit, A., Maurer, T., Hochrein, H., Bauer, S., Huster, K.M., Busch, D.H., and Wagner, H. 2003. Cutting edge: Toll‐like receptor 9 expression is not required for CpG DNA‐aided cross‐presentation of DNA‐conjugated antigens but essential for cross‐priming of CD8 T cells. J. Immunol. 170:2802‐2805.
  Hensen, S.M., Derksen, M., and Pruijn, G.J. 2014. Multiplex peptide‐based B cell epitope mapping. Methods Mol. Biol. 1184:295‐308.
  Herbath, M., Szekeres, Z., Kovesdi, D., Papp, K., Erdei, A., and Prechl, J. 2014. Coadministration of antigen‐conjugated and free CpG: effects of in vitro and in vivo interactions in a murine model. Immunol. Lett. 160:178‐185.
  Hijnen, M., van Zoelen, D.J., Chamorro, C., van Gageldonk, P., Mooi, F.R., Berbers, G., and Liskamp, R.M. 2007. A novel strategy to mimic discontinuous protective epitopes using a synthetic scaffold. Vaccine 25:6807‐6817.
  Huleatt, J.W., Nakaar, V., Desai, P., Huang, Y., Hewitt, D., Jacobs, A., Tang, J., McDonald, W., Song, L., Evans, R.K., Umlauf, S., Tussey, L., and Powell, T.J. 2008. Potent immunogenicity and efficacy of a universal influenza vaccine candidate comprising a recombinant fusion protein linking influenza M2e to the TLR5 ligand flagellin. Vaccine 26:201‐214.
  Iurescia, S., Fioretti, D., and Rinaldi, M. 2014a. A blueprint for DNA vaccine design. Methods Mol. Biol. 1143:3‐10.
  Iurescia, S., Fioretti, D., and Rinaldi, M. 2014b. Strategies for improving DNA vaccine performance. Methods Mol. Biol. 1143:21‐31.
  Josefsberg, J.O. and Buckland, B. 2012. Vaccine process technology. Biotechnol. Bioeng. 109:1443‐1460.
  Kastenmuller, W., Kastenmuller, K., Kurts, C., and Seder, R.A. 2014. Dendritic cell‐targeted vaccines—hope or hype? Nat. Rev. Immunol. 14:705‐711.
  Khan, K.H. 2013. DNA vaccines: roles against diseases. Germs 3:26‐35.
  Kieber‐Emmons, T., Saha, S., Pashov, A., Monzavi‐Karbassi, B., and Murali, R. 2014. Carbohydrate‐mimetic peptides for pan anti‐tumor responses. Front. Immunol. 5:308. doi: 10.3389/fimmu.2014.00308
  Lasarte, J.J., Casares, N., Gorraiz, M., Hervas‐Stubbs, S., Arribillaga, L., Mansilla, C., Durantez, M., Llopiz, D., Sarobe, P., Borras‐Cuesta, F., Prieto, J., and Leclerc, C. 2007. The extra domain A from fibronectin targets antigens to TLR4‐expressing cells and induces cytotoxic T cell responses in vivo. J. Immunol. 178:748‐756.
  Lau, Y.F., Deliyannis, G., Zeng, W., Mansell, A., Jackson, D.C., and Brown, L.E. 2006. Lipid‐containing mimetics of natural triggers of innate immunity as CTL‐inducing influenza vaccines. Int. Immunol. 18:1801‐1813.
  Lee, C.C., Avalos, A.M., and Ploegh, H.L. 2012. Accessory molecules for Toll‐like receptors and their function. Nat. Rev. Immunol. 12:168‐179.
  Lee, S.M., Kok, K.H., Jaume, M., Cheung, T.K., Yip, T.F., Lai, J.C., Guan, Y., Webster, R.G., Jin, D.Y., and Peiris, J.S. 2014. Toll‐like receptor 10 is involved in induction of innate immune responses to influenza virus infection. Proc. Natl. Acad. Sci. U.S.A. 111:3793‐3798.
  Lees, A., Sen, G., and LopezAcosta, A. 2006. Versatile and efficient synthesis of protein‐polysaccharide conjugate vaccines using aminooxy reagents and oxime chemistry. Vaccine 24:716‐729.
  Li, W., Joshi, M.D., Singhania, S., Ramsey, K.H., and Murthy, A.K. 2014. Peptide vaccine: Progress and challenges. Vaccines 2:515‐536.
  Lua, L.H., Connors, N.K., Sainsbury, F., Chuan, Y.P., Wibowo, N., and Middelberg, A.P. 2014. Bioengineering virus‐like particles as vaccines. Biotechnol. Bioeng. 111:425‐440.
  Maisonneuve, C., Bertholet, S., Philpott, D.J., and De Gregorio, E. 2014. Unleashing the potential of NOD‐ and Toll‐like agonists as vaccine adjuvants. Proc. Natl. Acad. Sci. U.S.A. 111:12294‐12299.
  McGinnes, L.W. and Morrison, T.G. 2013. Newcastle disease virus‐like particles: Preparation, purification, quantification, and incorporation of foreign glycoproteins. Curr. Protoc. Microbiol. 30:18.2.1‐18.2.21.
  Meinke, A., Henics, T., Hanner, M., Minh, D.B., and Nagy, E. 2005. Antigenome technology: A novel approach for the selection of bacterial vaccine candidate antigens. Vaccine 23:2035‐2041.
  Mitchell, D., Yong, M., Raju, J., Willemsen, N., Black, M., Trent, A., Tirrell, M., and Olive, C. 2011. Toll‐like receptor‐mediated adjuvanticity and immunomodulation in dendritic cells: Implications for peptide vaccines. Hum. Vaccines 7:85‐93.
  Mohan, T., Verma, P., and Rao, D.N. 2013. Novel adjuvants and delivery vehicles for vaccines development: A road ahead. Ind. J. Med. Res. 138:779‐795.
  Movahedi, A.R. and Hampson, D.J. 2008. New ways to identify novel bacterial antigens for vaccine development. Vet. Microbiol. 131:1‐13.
  Moyle, P.M. and Toth, I. 2013. Modern subunit vaccines: Development, components, and research opportunities. ChemMedChem 8:360‐376.
  Moyle, P.M., Olive, C., Ho, M.F., Pandey, M., Dyer, J., Suhrbier, A., Fujita, Y., and Toth, I. 2007. Toward the development of prophylactic and therapeutic human papillomavirus type‐16 lipopeptide vaccines. J. Med. Chem. 50:4721‐4727.
  Moyle, P.M., Hartas, J., Henningham, A., Batzloff, M.R., Good, M.F., and Toth, I. 2013. An efficient, chemically‐defined semisynthetic lipid‐adjuvanted nanoparticulate vaccine development system. Nanomedicine 9:935‐944.
  Moyle, P.M., Dai, W., Zhang, Y., Batzloff, M.R., Good, M.F., and Toth, I. 2014. Site‐specific incorporation of three toll‐like receptor 2 targeting adjuvants into semisynthetic, molecularly defined nanoparticles: Application to group A streptococcal vaccines. Bioconj. Chem. 25:965‐978.
  Nuhn, L., Hartmann, S., Palitzsch, B., Gerlitzki, B., Schmitt, E., Zentel, R., and Kunz, H. 2013. Water‐soluble polymers coupled with glycopeptide antigens and T‐cell epitopes as potential antitumor vaccines. Angew. Chem. Int. Ed. 52:10652‐10656.
  Oh, J.Z. and Kedl, R.M. 2010. The capacity to induce cross‐presentation dictates the success of a TLR7 agonist‐conjugate vaccine for eliciting cellular immunity. J. Immunol. 185:4602‐4608.
  Patronov, A. and Doytchinova, I. 2013. T‐cell epitope vaccine design by immunoinformatics. Open Biol. 3:120139.
  Peeters, C.C., Lagerman, P.R., de Weers, O., Oomen, L.A., Hoogerhout, P., Beurret, M., Poolman, J.T., and Reddin, K.M. 2003. Preparation of polysaccharide‐conjugate vaccines. Methods Mol. Biol. 87:153‐174.
  Pizza, M., Scarlato, V., Masignani, V., Giuliani, M.M., Arico, B., Comanducci, M., Jennings, G.T., Baldi, L., Bartolini, E., Capecchi, B., Galeotti, C.L., Luzzi, E., Manetti, R., Marchetti, E., Mora, M., Nuti, S., Ratti, G., Santini, L., Savino, S., Scarselli, M., Storni, E., Zuo, P., Broeker, M., Hundt, E., Knapp, B., Blair, E., Mason, T., Tettelin, H., Hood, D.W., Jeffries, A.C., Saunders, N.J., Granoff, D.M., Venter, J.C., Moxon, E.R., Grandi, G., and Rappuoli, R. 2000. Identification of vaccine candidates against serogroup B meningococcus by whole‐genome sequencing. Science 287:1816‐1820.
  Ponomarenko, J., Bui, H.H., Li, W., Fusseder, N., Bourne, P.E., Sette, A., and Peters, B. 2008. ElliPro: A new structure‐based tool for the prediction of antibody epitopes. BMC Bioinform. 9:514.
  Purcell, A.W., McCluskey, J., and Rossjohn, J. 2007. More than one reason to rethink the use of peptides in vaccine design. Nat. Rev. Drug Discov. 6:404‐414.
  Qi, T., Qiu, T., Zhang, Q., Tang, K., Fan, Y., Qiu, J., Wu, D., Zhang, W., Chen, Y., Gao, J., Zhu, R., and Cao, Z. 2014. SEPPA 2.0‐more refined server to predict spatial epitope considering species of immune host and subcellular localization of protein antigen. Nucleic Acids Res. 42:W59‐63.
  Rappuoli, R., Pizza, M., Del Giudice, G., and De Gregorio, E. 2014. Vaccines, new opportunities for a new society. Proc. Natl. Acad. Sci. U.S.A. 111:12288‐12293.
  Reed, S.G., Orr, M.T., and Fox, C.B. 2013. Key roles of adjuvants in modern vaccines. Nat. Med. 19:1597‐1608.
  Regules, J.A., Cummings, J.F., and Ockenhouse, C.F. 2011. The RTS,S vaccine candidate for malaria. Expert Rev. Vaccines 10:589‐599.
  Robinson, J.A. 2013. Max Bergmann lecture protein epitope mimetics in the age of structural vaccinology. J. Pept. Sci. 19:127‐140.
  Rock, K.L., Farfan‐Arribas, D.J., and Shen, L. 2010. Proteases in MHC class I presentation and cross‐presentation. J. Immunol. 184:9‐15.
  Roderick, M. and Finn, A. 2014. Advances towards the prevention of meningococcal B disease: A multidimensional story. J. Infect. 68:S76‐S82.
  Rudra, J.S., Sun, T., Bird, K.C., Daniels, M.D., Gasiorowski, J.Z., Chong, A.S., and Collier, J.H. 2012. Modulating adaptive immune responses to peptide self‐assemblies. ACS Nano 6:1557‐1564.
  Rueckert, C. and Guzman, C.A. 2012. Vaccines: From empirical development to rational design. PLoS Path. 8:e1003001.
  Schuler, M.M., Nastke, M.D., and Stevanovikc, S. 2007. SYFPEITHI: Database for searching and T‐cell epitope prediction. Methods Mol. Biol. 409:75‐93.
  Schussek, S., Trieu, A., and Doolan, D.L. 2014. Genome‐ and proteome‐wide screening strategies for antigen discovery and immunogen design. Biotechnol. Adv. 32:403‐414.
  Shukla, N.M., Lewis, T.C., Day, T.P., Mutz, C.A., Ukani, R., Hamilton, C.D., Balakrishna, R., and David, S.A. 2011. Toward self‐adjuvanting subunit vaccines: Model peptide and protein antigens incorporating covalently bound toll‐like receptor‐7 agonistic imidazoquinolines. Bioorg. Med. Chem. Lett. 21:3232‐3236.
  Singh, H., Ansari, H.R., and Raghava, G.P. 2013. Improved method for linear B‐cell epitope prediction using antigen's primary sequence. PLoS One 8:e62216.
  Singh, Y., Dolphin, G.T., Razkin, J., and Dumy, P. 2006. Synthetic peptide templates for molecular recognition: Recent advances and applications. ChemBioChem 7:1298‐1314.
  Sioud, M., Skorstad, G., Mobergslien, A., and Saeboe‐Larssen, S. 2013. A novel peptide carrier for efficient targeting of antigens and nucleic acids to dendritic cells. FASEB J. 27:3272‐3283.
  Smith, D.M., Simon, J.K., and Baker, J.R. Jr. 2013. Applications of nanotechnology for immunology. Nat. Rev. Immunol. 13:592‐605.
  Su, C.H., Pal, N.R., Lin, K.L., and Chung, I.F. 2012. Identification of amino acid propensities that are strong determinants of linear B‐cell epitope using neural networks. PLoS One 7:e30617.
  Sweredoski, M.J. and Baldi, P. 2008. PEPITO: improved discontinuous B‐cell epitope prediction using multiple distance thresholds and half sphere exposure. Bioinformatics 24:1459‐1460.
  Talaat, A.M. and Stemke‐Hale, K. 2005. Expression library immunization: A road map for discovery of vaccines against infectious diseases. Infect. Immun. 73:7089‐7098.
  Tam, J.P. and Spetzler, J.C. 1997. Multiple antigen peptide system. Methods Enzymol. 289:612‐637.
  The RTS,S Clinical Trials Partnership. 2014. Efficacy and safety of the RTS,S/AS01 malaria vaccine during 18 months after vaccination: a phase 3 randomized, controlled trial in children and young infants at 11 African sites. PLoS Med. 11:e1001685.
  van Poelgeest, M.I., Welters, M.J., van Esch, E.M., Stynenbosch, L.F., Kerpershoek, G., van Persijn van Meerten, E.L., van den Hende, M., Lowik, M.J., Berends‐van der Meer, D.M., Fathers, L.M., Valentijn, A.R., Oostendorp, J., Fleuren, G.J., Melief, C.J., Kenter, G.G., and van der Burg, S.H. 2013. HPV16 synthetic long peptide (HPV16‐SLP) vaccination therapy of patients with advanced or recurrent HPV16‐induced gynecological carcinoma, a phase II trial. J. Transl. Med. 11:88.
  Villarreal, D.O., Talbott, K.T., Choo, D.K., Shedlock, D.J., and Weiner, D.B. 2013. Synthetic DNA vaccine strategies against persistent viral infections. Expert Rev. Vaccines 12:537‐554.
  Vyas, S.P., Goyal, A.K., and Khatri, K. 2010. Mannosylated liposomes for targeted vaccines delivery. Methods Mol. Biol. 605:177‐188.
  Wack, A. and Gallorini, S. 2008. Bacterial polysaccharides with zwitterionic charge motifs: Toll‐like receptor 2 agonists, T cell antigens, or both? Immunopharmacol. Immunotoxicol. 30:761‐770.
  Wang, G., Pan, L., and Zhang, Y. 2011. Approaches to improved targeting of DNA vaccines. Hum. Vaccines 7:1271‐1281.
  Wang, N., Wang, T., Zhang, M., Chen, R., Niu, R., and Deng, Y. 2014. Mannose derivative and lipid A dually decorated cationic liposomes as an effective cold chain free oral mucosal vaccine adjuvant‐delivery system. Eur. J. Pharm. Biopharm. 88:194‐206.
  Wang, Q., Zhou, Z., Tang, S., and Guo, Z. 2012. Carbohydrate‐monophosphoryl lipid A conjugates are fully synthetic self‐adjuvanting cancer vaccines eliciting robust immune responses in the mouse. ACS Chem. Biol. 7:235‐240.
  Willems, M.M.J.H.P., Zom, G.G., Khan, S., Meeuwenoord, N., Melief, C.J.M., van der Stelt, M., Overkleeft, H.S., Codee, J.D.C., van der Marel, G.A., Ossendorp, F., and Filippov, D.V. 2014. N‐Tetradecylcarbamyl lipopeptides as novel agonists for Toll‐like receptor 2. J. Med. Chem. 57:6873‐6878.
  Willyard, C. 2014. Resurrecting the 'yuppie vaccine'. Nat. Med. 20:698‐701.
  Yan, Z., Hartsock, W.J., Qian, Z.H., Holmes, K.V., and Hodges, R.S. 2012. Strategies for designing peptide immunogens to elicit alpha‐helical conformation‐specific antibodies reactive with native proteins. In Small Wonders: Peptides for Disease Control, Vol. 1095 (K. Rajasekaran, J.W. Cary, J.M. Jaynes, and E. Montesinos, eds.) pp. 93‐136. American Chemical Society, Washington, D.C.
  Zeng, W., Ghosh, S., Lau, Y.F., Brown, L.E., and Jackson, D.C. 2002. Highly immunogenic and totally synthetic lipopeptides as self‐adjuvanting immunocontraceptive vaccines. J. Immunol. 169:4905‐4912.
  Zeng, W., Eriksson, E.M., Lew, A., and Jackson, D.C. 2011. Lipidation of intact proteins produces highly immunogenic vaccine candidates. Mol. Immunol. 48:490‐496.
  Zhu, X., Ramos, T.V., Gras‐Masse, H., Kaplan, B.E., and BenMohamed, L. 2004. Lipopeptide epitopes extended by an Nϵ‐palmitoyl‐lysine moiety increase uptake and maturation of dendritic cells through a Toll‐like receptor‐2 pathway and trigger a Th1‐dependent protective immunity. Eur. J. Immunol. 34:3102‐3114.
  Zom, G.G., Khan, S., Filippov, D.V., and Ossendorp, F. 2012. TLR ligand‐peptide conjugate vaccines: toward clinical application. Adv. Immunol. 114:177‐201.
  Zom, G.G., Khan, S., Britten, C.M., Sommandas, V., Camps, M.G., Loof, N.M., Budden, C.F., Meeuwenoord, N.J., Filippov, D.V., van der Marel, G.A., Overkleeft, H.S., Melief, C.J., and Ossendorp, F. 2014. Efficient induction of antitumor immunity by synthetic toll‐like receptor ligand‐peptide conjugates. Cancer Immunol. Res. 2:756‐764.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library