DNA Immunization

Shixia Wang1, Shan Lu1

1 University of Massachusetts Medical School, Worcester, Massachusetts
Publication Name:  Current Protocols in Microbiology
Unit Number:  Unit 18.3
DOI:  10.1002/9780471729259.mc1803s31
Online Posting Date:  November, 2013
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

DNA immunization was discovered in early 1990s, and its use has been expanded from vaccine studies to a broader range of biomedical research areas, such as the generation of high‐quality polyclonal and monoclonal antibodies as research reagents. In this unit, three common DNA immunization methods are described: needle injection, electroporation, and gene gun. In addition, several common considerations related to DNA immunization are discussed. Curr. Protoc. Microbiol. 31:18.3.1‐18.3.24. ©2013 by John Wiley & Sons, Inc.

Keywords: DNA vaccine; immunization; electroporation; gene gun

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Strategic Planning
  • Basic Protocol 1: DNA Immunization by Needle Injection
  • DNA Immunization via Electroporation
  • Basic Protocol 2: Electroporation Using Caliper Electrode
  • Alternate Protocol 1: Electroporation Using Needle Electrode Electroporator
  • Basic Protocol 3: DNA Immunization Using a Gene Gun to Deliver Gold Beads Coated with DNA Plasmids
  • Support Protocol 1: Preparation of Gold Beads Coated with DNA Vaccine Plasmids
  • Support Protocol 2: Preparation of Gene Gun Tubing and Shots
  • Commentary
  • Literature Cited
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: DNA Immunization by Needle Injection

  Materials
  • Desired animal species (mice or rabbits)
  • Purified DNA vaccine plasmids in 0.9% (w/v) NaCl (pH 7.0 to 7.2), with a proper DNA concentration, usually in the range of 1 to 3 mg/ml
  • Mouse restrainers (optional; appendix 3N)
  • 0.5‐ or 1‐ml disposable syringes with 26‐ or 30‐G needles
  • Rabbit restrainers (optional; Donovan and Brown, )
  • Butterfly infusion set (BD Vacutainer Safety‐Lok Blood Collection Set, 23‐G × 3/4 in. × 12 in.) for rabbit blood collection (also see Donovan and Brown, )
  • 20‐ml syringes for rabbit blood collection (also see Donovan and Brown, )
  • Vacutainer with separation gel for serum collection (BD‐Vacutainer SST, 10 ml) for rabbit blood collection (also see Donovan and Brown, )
  • Additional reagents and equipment for anesthesia of mice and rabbits (see Strategic Planning), animal restraint (Donovan and Brown, ), injection of mice ( appendix 3N), injection of rabbits (Donovan and Brown, ), and blood collection from mouse or rabbit ( appendix 3N or Donovan and Brown, , respectively)

Basic Protocol 2: Electroporation Using Caliper Electrode

  Materials
  • Desired animal species: mice or rabbits
  • Purified, sterile DNA vaccine plasmid in 0.9% (w/v) NaCl (pH 7.0 to 7.2) with a proper DNA concentration, usually 1 to 3 mg/ml
  • Animal clippers
  • Laboratory vacuum cleaner
  • Electroporator device (such as SCIENTZ‐2C from Scientz, http://www.scientzbio. com/)
  • Additional reagents and equipment for anesthesia (see Strategic Planning), needle injection of mice or rabbits ( protocol 1; also see appendix 3N and Donovan and Brown, ), and blood collection from mouse or rabbit ( appendix 3N or Donovan and Brown, , respectively)

Alternate Protocol 1: Electroporation Using Needle Electrode Electroporator

  Additional Materials (also see protocol 2)
  • Electroporator device (two are available commercially for pre‐clinical studies):
    • The BTX AgilePulse is designed for vaccine development and gene therapy applications and provides i.d. or i.m. electroporation options; the AgilePulse In Vivo System can be purchased with software supporting either i.d. or i.m. applications (see YouTube training video for BTX Agile Pulse at http://www.youtube.com/watch?v=89LCc_eki10)
    • The Teresa Gene Delivery Device made by Shanghai Teresa Bio‐Tech Co. (http://www.teresabio.com) has two models with focus on i.m. delivery of DNA vaccines.

Basic Protocol 3: DNA Immunization Using a Gene Gun to Deliver Gold Beads Coated with DNA Plasmids

  Materials
  • Desired animal species: mice or rabbits
  • Compressed helium gas tank with helium regulator
  • Animal clippers
  • Laboratory vacuum cleaner
  • Helios gene gun (BioRad)
  • Cartridges prepared in Support Protocols protocol 51 and protocol 62
  • Barrel liner
  • Cartridge holder
  • Helium hose
  • O‐ring
  • Additional reagents and equipment for anesthesia (see Strategic Planning)

Support Protocol 1: Preparation of Gold Beads Coated with DNA Vaccine Plasmids

  Materials
  • Gold beads of 0.5 to 5 µm diameter (BioRad, cat. no. 165‐2263); for most animal species, 1‐µm gold beads should be used as the first step
  • 100 mM nuclease‐free spermidine (Sigma, cat. no. S‐0266)
  • Plasmid DNA expressing the gene of interest in TE) buffer, pH 8.0 ( appendix 2A), at a concentration of 1 to 5 mg/ml
  • 2 M CaCl 2 solution, sterile (nuclease‐free)
  • Dehydrated ethanol, 200 proof (e.g., Spectrum, cat. no. ET107; https://www.spectrumchemical.com/)
  • 2.0‐ml microcentrifuge tubes
  • Water bath–type sonicator (Aquasonic Model 50T, VWR Scientific)
  • 22‐ml glass scintillation vials and Teflon caps

Support Protocol 2: Preparation of Gene Gun Tubing and Shots

  Materials
  • Compressed nitrogen gas tank with nitrogen regulator
  • Gold beads prep from protocol 5
  • Tefzel tubing, outer diameter 0.127 in., inner diameter 0.093 in. (BioRad, cat. no. 165‐2424; includes syringe kit, Tefzel tubing, tubing cutter, optimization kit)
  • Caps for tubing (supplied with Tefzel tubing kit from BioRad)
  • Tubing prep station (BioRad)
  • 10‐ml syringes with Tefzel tubing adaptor (5 mm o.d. × 3 mm i.d. soft rubber tubing)
  • Water bath–type sonicator
  • Tubing cutter (BioRad)
  • 22‐ml glass scintillation vials and Teflon caps
  • Desiccant capsules
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Aihara, H. and Miyazaki, J. 1998. Gene transfer into muscle by electroporation in vivo. Nat. Biotechnol. 16:867‐870.
  Andre, S., Seed, B., Eberle, J., Schraut, W., Bultmann, A., and Haas, J. 1998. Increased immune response elicited by DNA vaccination with a synthetic gp120 sequence with optimized codon usage. J. Virol. 72:1497‐1503.
  Babiuk, S., Tsang, C., van Drunen Littel‐van den Hurk, S., Babiuk, L.A., and Griebel, P.J. 2007. A single HBsAg DNA vaccination in combination with electroporation elicits long‐term antibody responses in sheep. Bioelectrochemistry 70:269‐274.
  Bergman, P.J., Camps‐Palau, M.A., McKnight, J.A., Leibman, N.F., Craft, D.M., Leung, C., Liao, J., Riviere, I., Sadelain, M., Hohenhaus, A.E., Gregor, P., Houghton, A.N., Perales, M.A., and Wolchok, J.D. 2006. Development of a xenogeneic DNA vaccine program for canine malignant melanoma at the Animal Medical Center. Vaccine 24:4582‐4585.
  Bloquel, C., Fabre, E., Bureau, M.F., and Scherman, D. 2004. Plasmid DNA electrotransfer for intracellular and secreted proteins expression: New methodological developments and applications. J. Gene Med. 6:S11‐S23.
  Cristillo, A.D., Wang, S., Caskey, M.S., Unangst, T., Hocker, L., He, L., Hudacik, L., Whitney, S., Keen, T., Chou, T.H., Shen, S., Joshi, S., Kalyanaraman, V.S., Nair, B., Markham, P., Lu, S., and Pal, R. 2006. Preclinical evaluation of cellular immune responses elicited by a polyvalent DNA prime/protein boost HIV‐1 vaccine. Virology 346:151‐168.
  Cui, Z., Dierling, A., and Foldvari, M. 2006. Non‐invasive immunization on the skin using DNA vaccine. Curr. Drug Deliv. 3:29‐35.
  Daniell, H., Vivekananda, J., Nielsen, B.L., Ye, G.N., Tewari, K.K., and Sanford, J.C. 1990. Transient foreign gene expression in chloroplasts of cultured tobacco cells after biolistic delivery of chloroplast vectors. Proc. Natl. Acad. Sci. U.S.A. 87:88‐92.
  Davidson, A.H., Traub‐Dargatz, J.L., Rodeheaver, R.M., Ostlund, E.N., Pedersen, D.D., Moorhead, R.G., Stricklin, J.B., Dewell, R.D., Roach, S.D., Long, R.E., Albers, S.J., Callan, R.J., and Salman, M.D. 2005. Immunologic responses to West Nile virus in vaccinated and clinically affected horses. J. Am. Vet. Med. Assoc. 226:240‐245.
  Dean, H.J. 2005. Epidermal delivery of protein and DNA vaccines. Expert Opin. Drug Deliv. 2:227‐236.
  Dobano, C., Widera, G., Rabussay, D., and Doolan, D.L. 2007. Enhancement of antibody and cellular immune responses to malaria DNA vaccines by in vivo electroporation. Vaccine 25:6635‐6645.
  Donovan, J. and Brown, P. 2006a. Parenteral injections. Curr. Protoc. Immunol. 73:1.6.1‐1.6.10.
  Donovan, J. and Brown, P. 2006b. Handling and restraint. Curr. Protoc. Immunol. 73:1.3.1‐1.3.6.
  Donovan, J. and Brown, P. 2006c. Blood collection. Curr. Protoc. Immunol. 73:1.7.1‐1.7.9.
  Drape, R.J., Macklin, M.D., Barr, L.J., Jones, S., Haynes, J.R., and Dean, H.J. 2006. Epidermal DNA vaccine for influenza is immunogenic in humans. Vaccine 24:4475‐4481.
  Dupuis, M., Denis‐Mize, K., Woo, C., Goldbeck, C., Selby, M.J., Chen, M., Otten, G.R., Ulmer, J.B., Donnelly, J.J., Ott, G., and McDonald, D.M. 2000. Distribution of DNA vaccines determines their immunogenicity after intramuscular injection in mice. J. Immunol. 165:2850‐2858.
  Frelin, L., Ahlen, G., Alheim, M., Weiland, O., Barnfield, C., Liljestrom, P., and Sallberg, M. 2004. Codon optimization and mRNA amplification effectively enhances the immunogenicity of the hepatitis C virus nonstructural 3/4A gene. Gene Ther. 11:522‐533.
  Fuller, D.H., Murphey‐Corb, M., Clements, J., Barnett, S., and Haynes, J.R. 1996. Induction of immunodeficiency virus‐specific immune responses in rhesus monkeys following gene gun–mediated DNA vaccination. J. Med. Primatol. 25:236‐241.
  Fynan, E.F., Webster, R.G., Fuller, D.H., Haynes, J.R., Santoro, J.C., and Robinson, H.L. 1993. DNA vaccines: Protective immunizations by parenteral, mucosal, and gene‐gun inoculations. Proc. Natl. Acad. Sci. U.S.A. 90:11478‐11482.
  Garver, K.A., LaPatra, S.E., and Kurath, G. 2005. Efficacy of an infectious hematopoietic necrosis (IHN) virus DNA vaccine in Chinook Oncorhynchus tshawytscha and sockeye O. nerka salmon. Dis. Aquat. Organ. 64:13‐22.
  Ge, G., Wang, S., Han, Y., Zhang, C., Lu, S., and Huang, Z. 2012. Removing N‐terminal sequences in pre‐S1 domain enhanced antibody and B‐cell responses by an HBV large surface antigen DNA vaccine. PLoS One 7:e41573.
  Gehl, J. and Mir, L.M. 1999. Determination of optimal parameters for in vivo gene transfer by electroporation, using a rapid in vivo test for cell permeabilization. Biochem. Biophys. Res. Commun. 261:377‐380.
  Gehl, J., Sorensen, T.H., Nielsen, K., Raskmark, P., Nielsen, S.L., Skovsgaard, T., and Mir, L.M. 1999. In vivo electroporation of skeletal muscle: Threshold, efficacy and relation to electric field distribution. Biochim. Biophys. Acta 1428:233‐240.
  Haas, J., Park, E.C., and Seed, B. 1996. Codon usage limitation in the expression of HIV‐1 envelope glycoprotein. Curr. Biol. 6:315‐324.
  Hara, T., Yasuda, K., and Fukuma, T. 2002. Effective gene transfer into Trypanosoma brucei bloodstream forms by particle bombardment. Mol. Biochem. Parasitol. 119:117‐119.
  Harari, A., Bart, P.A., Stohr, W., Tapia, G., Garcia, M., Medjitna‐Rais, E., Burnet, S., Cellerai, C., Erlwein, O., Barber, T., Moog, C., Liljestrom, P., Wagner, R., Wolf, H., Kraehenbuhl, J.P., Esteban, M., Heeney, J., Frachette, M.J., Tartaglia, J., McCormack, S., Babiker, A., Weber, J., and Pantaleo, G. 2008. An HIV‐1 clade C DNA prime, NYVAC boost vaccine regimen induces reliable, polyfunctional, and long‐lasting T cell responses. J. Exp. Med. 205:63‐77.
  Harrison, R.L., Byrne, B.J., and Tung, L. 1998. Electroporation‐mediated gene transfer in cardiac tissue. FEBS Lett. 435:1‐5.
  Haynes, J.R., Fuller, D.H., Eisenbraun, M.D., Ford, M.J., and Pertmer, T.M. 1994. Accell particle‐mediated DNA immunization elicits humoral, cytotoxic, and protective immune responses. AIDS Res. Hum. Retroviruses 10:S43‐S45.
  Haynes, J.R., McCabe, D.E., Swain, W.F., Widera, G., and Fuller, J.T. 1996. Particle‐mediated nucleic acid immunization. J. Biotechnol. 44:37‐42.
  Herrmann, J.E., Chen, S.C., Fynan, E.F., Santoro, J.C., Greenberg, H.B., and Robinson, H.L. 1996. DNA vaccines against rotavirus infections. Arch. Virol. 12:207‐215.
  Herrmann, J.E., Wang, S., Zhang, C., Panchal, R.G., Bavari, S., Lyons, C.R., Lovchik, J.A., Golding, B., Shiloach, J., and Lu, S. 2006. Passive immunotherapy of Bacillus anthracis pulmonary infection in mice with antisera produced by DNA immunization. Vaccine 24:5872‐5880.
  Hooper, J.W., Golden, J.W., Ferro, A.M., and King, A.D. 2007. Smallpox DNA vaccine delivered by novel skin electroporation device protects mice against intranasal poxvirus challenge. Vaccine 25:1814‐1823.
  Huang, M.T. and Gorman, C.M. 1990. The simian virus 40 small‐t intron, present in many common expression vectors, leads to aberrant splicing. Mol. Cell Biol. 10:1805‐1810.
  Jin, K., Wang, S., Zhang, C., Xiao, Y., Lu, S., and Huang, Z. 2013. Protective antibody responses against Clostridium difficile elicited by a DNA vaccine expressing the enzymatic domain of toxin B. Hum. Vaccin. Immunother. 9:63‐73.
  Johnston, S.A., Anziano, P.Q., Shark, K., Sanford, J.C., and Butow, R.A. 1988. Mitochondrial transformation in yeast by bombardment with microprojectiles. Science 240:1538‐1541.
  Jones, S., Evans, K., McElwaine‐Johnn, H., Sharpe, M., Oxford, J., Lambkin‐Williams, R., Mant, T., Nolan, A., Zambon, M., Ellis, J., Beadle, J., and Loudon, P.T. 2009. DNA vaccination protects against an influenza challenge in a double‐blind randomised placebo‐controlled phase 1b clinical trial. Vaccine 27:2506‐2512.
  Khan, A.S., Pope, M.A., and Draghia‐Akli, R. 2005. Highly efficient constant‐current electroporation increases in vivo plasmid expression. DNA Cell Biol. 24:810‐818.
  Klein, T.M., Kornstein, L., Sanford, J.C., and Fromm, M.E. 1989. Genetic transformation of maize cells by particle bombardment. Plant Physiol. 91:440‐444.
  Ko, H.J., Ko, S.Y., Kim, Y.J., Lee, E.G., Cho, S.N., and Kang, C.Y. 2005. Optimization of codon usage enhances the immunogenicity of a DNA vaccine encoding mycobacterial antigen Ag85B. Infect. Immun. 73:5666‐5674.
  Kozak, M. 1997. Recognition of AUG and alternative initiator codons is augmented by G in position +4 but is not generally affected by the nucleotides in positions +5 and +6. EMBO J. 16:2482‐2492.
  Ledgerwood, J.E., Wei, C.J., Hu, Z., Gordon, I.J., Enama, M.E., Hendel, C.S., McTamney, P.M., Pearce, M.B., Yassine, H.M., Boyington, J.C., Bailer, R., Tumpey, T.M., Koup, R.A., Mascola, J.R., Nabel, G.J., and Graham, B.S. 2011. DNA priming and influenza vaccine immunogenicity: Two phase 1 open label randomised clinical trials. Lancet Infect. Dis. 11:916‐924.
  Li, Y., Luo, L., Thomas, D.Y., and Kang, C.Y. 2000. The HIV‐1 Env protein signal sequence retards its cleavage and down‐regulates the glycoprotein folding. Virology 272:417‐428.
  Livingston, J.B., Lu, S., Robinson, H., and Anderson, D.J. 1998. Immunization of the female genital tract with a DNA‐based vaccine. Infect. Immun. 66:322‐329.
  Lodmell, D.L., Ray, N.B., and Ewalt, L.C. 1998. Gene gun particle‐mediated vaccination with plasmid DNA confers protective immunity against rabies virus infection. Vaccine 16:115‐118.
  Lodmell, D.L., Parnell, M.J., Bailey, J.R., Ewalt, L.C., and Hanlon, C.A. 2002. Rabies DNA vaccination of non‐human primates: Post‐exposure studies using gene gun methodology that accelerates induction of neutralizing antibody and enhances neutralizing antibody titers. Vaccine 20:2221‐2228.
  Lu, S. 1998. Developing DNA vaccines against immunodeficiency viruses. Curr. Top. Microbiol. Immunol. 226:161‐173.
  Lu, S., Santoro, J.C., Fuller, D.H., Haynes, J.R., and Robinson, H.L. 1995. Use of DNAs expressing HIV‐1 Env and noninfectious HIV‐1 particles to raise antibody responses in mice. Virology 209:147‐154.
  Lu, S., Manning, S., and Arthos, J. 2000. Antigen engineering in DNA immunization. Methods Mol. Med. 29:355‐374.
  Lu, S., Wyatt, R., Richmond, J.F., Mustafa, F., Wang, S., Weng, J., Montefiori, D.C., Sodroski, J., and Robinson, H.L. 1998. Immunogenicity of DNA vaccines expressing human immunodeficiency virus type 1 envelope glycoprotein with and without deletions in the V1/2 and V3 regions. AIDS Res. Hum. Retroviruses 14:151‐155.
  Luckay, A., Sidhu, M.K., Kjeken, R., Megati, S., Chong, S.Y., Roopchand, V., Garcia‐Hand, D., Abdullah, R., Braun, R., Montefiori, D.C., Rosati, M., Felber, B.K., Pavlakis, G.N., Mathiesen, I., Israel, Z.R., Eldridge, J.H., and Egan, M.A. 2007. Effect of plasmid DNA vaccine design and in vivo electroporation on the resulting vaccine‐specific immune responses in rhesus macaques. J. Virol. 81:5257‐5269.
  McMahon, J.M. and Wells, D.J. 2004. Electroporation for gene transfer to skeletal muscles: current status. BioDrugs 18:155‐165.
  Mir, L.M. 2001. Therapeutic perspectives of in vivo cell electropermeabilization. Bioelectrochemistry 53:1‐10.
  Mir, L.M., Bureau, M.F., Gehl, J., Rangara, R., Rouy, D., Caillaud, J.M., Delaere, P., Branellec, D., Schwartz, B., and Scherman, D. 1999. High‐efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc. Natl. Acad. Sci. U.S.A. 96:4262‐4267.
  Montgomery, D.L., Shiver, J.W., Leander, K.R., Perry, H.C., Friedman, A., Martinez, D., Ulmer, J.B., Donnelly, J.J., and Liu, M.A. 1993. Heterologous and homologous protection against influenza A by DNA vaccination: Optimization of DNA vectors. DNA Cell Biol. 12:777‐783.
  Neumann, E., Schaefer‐Ridder, M., Wang, Y., and Hofschneider, P.H. 1982. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1:841‐845.
  Nickoloff, J.A. and Reynolds, R.J. 1992. Electroporation‐mediated gene transfer efficiency is reduced by linear plasmid carrier DNAs. Anal. Biochem. 205:237‐243.
  Norman, J.A., Hobart, P., Manthorpe, M., Felgner, P., and Wheeler, C. 1997. Development of improved vectors for DNA‐based immunization and other gene therapy applications. Vaccine 15:801‐803.
  Pal, R., Kalyanaraman, V.S., Nair, B.C., Whitney, S., Keen, T., Hocker, L., Hudacik, L., Rose, N., Mboudjeka, I., Shen, S., Wu‐Chou, T.H., Montefiori, D., Mascola, J., Markham, P., and Lu, S. 2006. Immunization of rhesus macaques with a polyvalent DNA prime/protein boost human immunodeficiency virus type 1 vaccine elicits protective antibody response against simian human immunodeficiency virus of R5 phenotype. Virology 348:341‐353.
  Payne, L.G., Fuller, D.H., and Haynes, J.R. 2002. Particle‐mediated DNA vaccination of mice, monkeys and men: Looking beyond the dogma. Curr. Opin. Mol. Ther. 4:459‐466.
  Potter, H. 1988. Electroporation in biology: Methods, applications, and instrumentation. Anal. Biochem. 174:361‐373.
  Redding, L. and Weiner, D.B. 2009. DNA vaccines in veterinary use. Expert Rev. Vaccines 8:1251‐1276.
  Rizzuto, G., Cappelletti, M., Maione, D., Savino, R., Lazzaro, D., Costa, P., Mathiesen, I., Cortese, R., Ciliberto, G., Laufer, R., La Monica, N., and Fattori, E. 1999. Efficient and regulated erythropoietin production by naked DNA injection and muscle electroporation. Proc. Natl. Acad. Sci. U.S.A. 96:6417‐6422.
  Rols, M.P. and Teissie, J. 1998. Electropermeabilization of mammalian cells to macromolecules: Control by pulse duration. Biophys. J. 75:1415‐1423.
  Roy, M.J., Wu, M.S., Barr, L.J., Fuller, J.T., Tussey, L.G., Speller, S., Culp, J., Burkholder, J.K., Swain, W.F., Dixon, R.M., Widera, G., Vessey, R., King, A., Ogg, G., Gallimore, A., Haynes, J.R., and Heydenburg Fuller, D. 2000. Induction of antigen‐specific CD8+ T cells, T helper cells, and protective levels of antibody in humans by particle‐mediated administration of a hepatitis B virus DNA vaccine. Vaccine 19:764‐778.
  Sakhatskyy, P., Wang, S., Chou, T.H., and Lu, S. 2006. Immunogenicity and protection efficacy of monovalent and polyvalent poxvirus vaccines that include the D8 antigen. Virology 355:164‐174.
  Sakhatskyy, P., Wang, S., Zhang, C., Chou, T.H., Kishko, M., and Lu, S. 2008. Immunogenicity and protection efficacy of subunit‐based smallpox vaccines using variola major antigens. Virology 371:98‐107.
  Shen, M., Wang, S., Ge, G., Xing, Y., Ma, X., Huang, Z., and Lu, S. 2010. Profiles of B and T cell immune responses elicited by different forms of the hepatitis B virus surface antigen. Vaccine 28:7288‐7296.
  Shen, S., Wang, S., Britt, W.J., and Lu, S. 2007. DNA vaccines expressing glycoprotein complex II antigens gM and gN elicited neutralizing antibodies against multiple human cytomegalovirus (HCMV) isolates. Vaccine 25:3319‐3327.
  Suguitan, A.L. Jr., Cheng, X., Wang, W., Wang, S., Jin, H., and Lu, S. 2011. Influenza H5 hemagglutinin DNA primes the antibody response elicited by the live attenuated influenza A/Vietnam/1203/2004 vaccine in ferrets. PLoS One 6:e21942.
  Sukharev, S.I., Klenchin, V.A., Serov, S.M., Chernomordik, L.V., and Chizmadzhev, Y.A. 1992. Electroporation and electrophoretic DNA transfer into cells. The effect of DNA interaction with electropores. Biophys. J. 63:1320‐1327.
  Tandia, B.M., Lonez, C., Vandenbranden, M., Ruysschaert, J.M., and Elouahabi, A. 2005. Lipid mixing between lipoplexes and plasma lipoproteins is a major barrier for intravenous transfection mediated by cationic lipids. J. Biol. Chem. 280:12255‐12261.
  Tang, D.C., DeVit, M., and Johnston, S.A. 1992. Genetic immunization is a simple method for eliciting an immune response. Nature 356:152‐154.
  Tanigawa, K., Yu, H., Sun, R., Nickoloff, B.J., and Chang, A.E. 2000. Gene gun application in the generation of effector T cells for adoptive immunotherapy. Cancer Immunol. Immunother. 48:635‐643.
  Tollefsen, S., Vordermeier, M., Olsen, I., Storset, A.K., Reitan, L.J., Clifford, D., Lowrie, D.B., Wiker, H.G., Huygen, K., Hewinson, G., Mathiesen, I., and Tjelle, T.E. 2003. DNA injection in combination with electroporation: A novel method for vaccination of farmed ruminants. Scand. J. Immunol. 57:229‐238.
  Tsang, C., Babiuk, S., van Drunen Littel‐van den Hurk, S., Babiuk, L.A., and Griebel, P. 2007. A single DNA immunization in combination with electroporation prolongs the primary immune response and maintains immune memory for six months. Vaccine 25:5485‐5494.
  Tsong, T.Y. 1991. Electroporation of cell membranes. Biophys. J. 60:297‐306.
  Uchijima, M., Yoshida, A., Nagata, T., and Koide, Y. 1998. Optimization of codon usage of plasmid DNA vaccine is required for the effective MHC class I‐restricted T cell responses against an intracellular bacterium. J. Immunol. 161:5594‐5599.
  Ulmer, J.B., Donnelly, J.J., Parker, S.E., Rhodes, G.H., Felgner, P.L., Dwarki, V.J., Gromkowski, S.H., Deck, R.R., DeWitt, C.M., Friedman, A. et al. 1993. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259:1745‐1749.
  Vaine, M., Wang, S., Crooks, E.T., Jiang, P., Montefiori, D.C., Binley, J., and Lu, S. 2008. Improved induction of antibodies against key neutralizing epitopes by human immunodeficiency virus type 1 gp120 DNA prime‐protein boost vaccination compared to gp120 protein‐only vaccination. J. Virol. 82:7369‐7378.
  Vaine, M., Wang, S., Hackett, A., Arthos, J., and Lu, S. 2010a. Antibody responses elicited through homologous or heterologous prime‐boost DNA and protein vaccinations differ in functional activity and avidity. Vaccine 28:2999‐3007.
  Vaine, M., Wang, S., Liu, Q., Arthos, J., Montefiori, D., Goepfert, P., McElrath, M.J., and Lu, S. 2010b. Profiles of human serum antibody responses elicited by three leading HIV vaccines focusing on the induction of Env‐specific antibodies. PLoS One 5:e13916.
  Vanderzanden, L., Bray, M., Fuller, D., Roberts, T., Custer, D., Spik, K., Jahrling, P., Huggins, J., Schmaljohn, A., and Schmaljohn, C. 1998. DNA vaccines expressing either the GP or NP genes of Ebola virus protect mice from lethal challenge. Virology 246:134‐144.
  Wallace, A., West, K., Rothman, A.L., Ennis, F.A., Lu, S., and Wang, S. 2013. Post‐translational intracellular trafficking determines the type of immune response elicited by DNA vaccines expressing Gag antigen of Human Immunodeficiency Virus Type 1 (HIV‐1). Hum. Vaccin. Immunother. 9(10).
  Wang, B., Ugen, K.E., Srikantan, V., Agadjanyan, M.G., Dang, K., Refaeli, Y., Sato, A.I., Boyer, J., Williams, W.V., and Weiner, D.B. 1993. Gene inoculation generates immune responses against human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. U.S.A. 90:4156‐4160.
  Wang, J., Murakami, T., Hakamata, Y., Ajiki, T., Jinbu, Y., Akasaka, Y., Ohtsuki, M., Nakagawa, H., and Kobayashi, E. 2001. Gene gun‐mediated oral mucosal transfer of interleukin 12 cDNA coupled with an irradiated melanoma vaccine in a hamster model: Successful treatment of oral melanoma and distant skin lesion. Cancer Gene Ther. 8:705‐712.
  Wang, S., Heilman, D., Liu, F., Giehl, T., Joshi, S., Huang, X., Chou, T.H., Goguen, J., and Lu, S. 2004. A DNA vaccine producing LcrV antigen in oligomers is effective in protecting mice from lethal mucosal challenge of plague. Vaccine 22:3348‐3357.
  Wang, S., Chou, T.H., Sakhatskyy, P.V., Huang, S., Lawrence, J.M., Cao, H., Huang, X., and Lu, S. 2005. Identification of two neutralizing regions on the severe acute respiratory syndrome coronavirus spike glycoprotein produced from the mammalian expression system. J. Virol. 79:1906‐1910.
  Wang, S., Farfan‐Arribas, D.J., Shen, S., Chou, T.H., Hirsch, A., He, F., and Lu, S. 2006a. Relative contributions of codon usage, promoter efficiency and leader sequence to the antigen expression and immunogenicity of HIV‐1 Env DNA vaccine. Vaccine 24:4531‐4540.
  Wang, S., Pal, R., Mascola, J.R., Chou, T.H., Mboudjeka, I., Shen, S., Liu, Q., Whitney, S., Keen, T., Nair, B.C., Kalyanaraman, V.S., Markham, P., and Lu, S. 2006b. Polyvalent HIV‐1 Env vaccine formulations delivered by the DNA priming plus protein boosting approach are effective in generating neutralizing antibodies against primary human immunodeficiency virus type 1 isolates from subtypes A, B, C, D and E. Virology 350:34‐47.
  Wang, S., Taaffe, J., Parker, C., Solorzano, A., Cao, H., Garcia‐Sastre, A., and Lu, S. 2006c. Hemagglutinin (HA) proteins from H1 and H3 serotypes of influenza A viruses require different antigen designs for the induction of optimal protective antibody responses as studied by codon‐optimized HA DNA vaccines. J. Virol. 80:11628‐11637.
  Wang, S., Joshi, S., Mboudjeka, I., Liu, F., Ling, T., Goguen, J.D., and Lu, S. 2008a. Relative immunogenicity and protection potential of candidate Yersinia pestis antigens against lethal mucosal plague challenge in Balb/C mice. Vaccine 26:1664‐1674.
  Wang, S., Kennedy, J.S., West, K., Montefiori, D.C., Coley, S., Lawrence, J., Shen, S., Green, S., Rothman, A.L., Ennis, F.A., Arthos, J., Pal, R., Markham, P., and Lu, S. 2008b. Cross‐subtype antibody and cellular immune responses induced by a polyvalent DNA prime‐protein boost HIV‐1 vaccine in healthy human volunteers. Vaccine 26:3947‐3957.
  Wang, S., Parker, C., Taaffe, J., Solorzano, A., Garcia‐Sastre, A., and Lu, S. 2008c. Heterologous HA DNA vaccine prime―inactivated influenza vaccine boost is more effective than using DNA or inactivated vaccine alone in eliciting antibody responses against H1 or H3 serotype influenza viruses. Vaccine 26:3626‐3633.
  Wang, S., Zhang, C., Zhang, L., Li, J., Huang, Z., and Lu, S. 2008d. The relative immunogenicity of DNA vaccines delivered by the intramuscular needle injection, electroporation and gene gun methods. Vaccine 26:2100‐2110.
  Wang, S., Mboudjeka, I., Goguen, J.D., and Lu, S. 2010. Antigen engineering can play a critical role in the protective immunity elicited by Yersinia pestis DNA vaccines. Vaccine 28:2011‐2019.
  Wang, S., Goguen, J.D., Li, F., and Lu, S. 2011a. Involvement of CD8+ T cell‐mediated immune responses in LcrV DNA vaccine induced protection against lethal Yersinia pestis challenge. Vaccine 29:6802‐6809.
  Wang, S., Hackett, A., Jia, N., Zhang, C., Zhang, L., Parker, C., Zhou, A., Li, J., Cao, W.C., Huang, Z., Li, Y., and Lu, S. 2011b. Polyvalent DNA vaccines expressing HA antigens of H5N1 influenza viruses with an optimized leader sequence elicit cross‐protective antibody responses. PLoS One 6:e28757.
  Widera, G., Austin, M., Rabussay, D., Goldbeck, C., Barnett, S.W., Chen, M., Leung, L., Otten, G.R., Thudium, K., Selby, M.J., and Ulmer, J.B. 2000. Increased DNA vaccine delivery and immunogenicity by electroporation in vivo. J. Immunol. 164:4635‐4640.
  Wolf, H., Rols, M.P., Boldt, E., Neumann, E., and Teissie, J. 1994. Control by pulse parameters of electric field‐mediated gene transfer in mammalian cells. Biophys. J. 66:524‐531.
  Xing, Y., Huang, Z., Lin, Y., Li, J., Chou, T.H., Lu, S., and Wang, S. 2008. The ability of Hepatitis B surface antigen DNA vaccine to elicit cell‐mediated immune responses, but not antibody responses, was affected by the deglysosylation of S antigen. Vaccine 26:5145‐5152.
  Xu, G., Wang, S., Zhuang, L., Hackett, A., Gu, L., Zhang, L., Zhang, C., Wang, H., Huang, Z., and Lu, S. 2009. Intramuscular delivery of a cholera DNA vaccine primes both systemic and mucosal protective antibody responses against cholera. Vaccine 27:3821‐3830.
  Xu, H.Y., Lim, K.P., Shen, S., and Liu, D.X. 2001. Further identification and characterization of novel intermediate and mature cleavage products released from the ORF 1b region of the avian coronavirus infectious bronchitis virus 1a/1b polyprotein. Virology 288:212‐222.
  Yager, E.J., Dean, H.J., and Fuller, D.H. 2009. Prospects for developing an effective particle‐mediated DNA vaccine against influenza. Expert Rev. Vaccines 8:1205‐1220.
  Yang, N.S., Burkholder, J., Roberts, B., Martinell, B., and McCabe, D. 1990. In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment. Proc. Natl. Acad. Sci. U.S.A. 87:9568‐9572.
  Ye, G.N., Daniell, H., and Sanford, J.C. 1990. Optimization of delivery of foreign DNA into higher‐plant chloroplasts. Plant Mol. Biol. 15:809‐819.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library