Isolation and Culture of Human Umbilical Vein Endothelial Cells (HUVEC)

Ambrose L. Cheung1

1 Dartmouth Medical School, Hanover, New Hampshire
Publication Name:  Current Protocols in Microbiology
Unit Number:  Appendix 4B
DOI:  10.1002/9780471729259.mca04bs4
Online Posting Date:  February, 2007
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Human‐derived endothelial cells can now be routinely harvested from human umbilical veins. Studies with human umbilical vein endothelial cells (HUVEC) have been conducted with cells from passage 2 to 5. It is now also possible to cryopreserve primary and early‐passaged HUVEC for future propagation and for forwarding to an end user by express courier. Stored HUVEC have been stably retrieved even after several years. These retrieval techniques have facilitated the deployment of HUVEC for many studies, including those for homeostasis, inflammatory disorders, atherosclerosis, cancer, and microbial adhesion and invasion. In this unit, we will delineate the procedure for harvesting, propagation, and storage of HUVEC.

Keywords: endothelial cell culture; HUVEC; propagation and storage; methods

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Basic Protocol 1: Harvest and Culture of HUVEC
  • Support Protocol 1: Cryopreservation and Thawing of HUVEC
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Harvest and Culture of HUVEC

  Materials
  • Human umbilical cord (cords held for more than 3 hr should be discarded)
  • HEPES‐buffered saline (HBS; see recipe), 37°C
  • 1× (0.1% w/v) collagenase, type I (lyophilized; 150 to 200 U/mg; Invitrogen); store in 10‐ml aliquots at –20°C
  • M199 medium (Bio‐Whittaker) supplemented with 20% (v/v) FBS
  • Phosphate‐buffered saline (PBS; appendix 2A)
  • Complete HUVEC culture medium/20% FBS (see recipe)
  • 0.02% (w/v) EDTA/0.5% (w/v) bovine serum albumin
  • 400‐ml beakers
  • Gauze
  • Nylon tie, 2–0 size, 6‐in. (15‐cm) length
  • Cannulas: blunt, hubless 10‐G needles
  • Hemostat
  • 1‐, 30‐ and 50‐ml syringes
  • 10‐G needles, blunt and hubless
  • No. 10 surgical blade
  • Surgical gloves
  • Polyethylene tubing, 1/8 in. (0.3 cm) outer diameter
  • 50‐ml conical polypropylene centrifuge tubes (e.g., Falcon 2070)
  • Tabletop centrifuge
  • 25‐cm2 gelatin‐coated tissue culture flasks (see recipe) and other gelatin‐coated tissue culture vessels as needed for passaging
  • Additional reagents and equipment for phase‐contrast microscopy (unit 2.1) and cryopreservation of HUVEC ( protocol 2)
NOTE: Utilize aseptic technique in all manipulations of human umbilical cords.

Support Protocol 1: Cryopreservation and Thawing of HUVEC

  • Confluent primary HUVEC growing in 25‐cm2 tissue culture flasks ( protocol 1)
  • M199 medium (Bio‐Whittaker) supplemented with 20% (v/v) FBS
  • 92.5% (v/v) complete culture medium (containing 20% FBS; see recipe)/7.5% (v/v) DMSO
  • 100% ethanol
  • 50‐ml conical polypropylene centrifuge tubes
  • 1.22‐ml sterile cryogenic vials (Nalgene)
  • Cryogenic workstation (Corning)
  • Liquid nitrogen cryogenic storage system (e.g., Fisher)
  • 15‐ml conical polypropylene centrifuge tubes
  • 75‐cm2 tissue culture flasks (Corning), gelatin‐coated (see recipe)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Bayer, A.S., Sullam, P.M., Ramos, M., Li, C., Cheung, A.L., and Yeaman, M.R. 1995. Staphylococcus aureus induces platelet aggregation via a fibrinogen‐dependent mechanism which is independent of principal platelet GP IIb/IIIa fibrinogen‐binding domains. Infect. Immun. 63:3634‐3641.
   Cheung, A.L., Krishnan, M., Jaffe, E.A., and Fischetti, V.A. 1991. Fibrinogen acts as a bridging molecule in the adherence of Staphylococcus aureus to cultured human endothelial cells. J. Clin. Invest. 87:2236‐2245.
   Chi, J.T., Chang, H.Y., Haraldsen, G., Jahnsen, F.L., Troyanskaya, O.G., Chang, D.S., Wang, W., Rockson, S.G., van de Rijn, M., Botstein, D., and Brown, P.O. 2003. Endothelial cell diversity revealed by global expression profiling. Proc. Natl. Acad. Sci. U.S.A. 100:10623‐10628.
   Drevets, D.A., Sawyer, R.T., Potter, T.A., and Campbell, P.A. 1995. Listeria monocytogenes infects human endothelial cells by two distinct mechanisms. Infect. Immun. 63:4268‐4276.
   Folkman, J., Haudenschild, C.C., and Zetter, B.R. 1979. Long‐term culture of capillary endothelial cells. Proc. Natl. Acad. Sci. U.S.A. 76:5217‐5221.
   Fukuda, K., Imamura, Y., Koshihara, Y., Ooyama, T., Hanamure, Y., and Ohyama, M. 1989. Establishment of human mucosal microvascular endothelial cells from inferior turbinate in culture. Am. J. Otolaryngol. 10:85‐91.
   Grimminger, F., Rose, F., Sibelius, U., Meinhardt, M., Potzsch, B., Spriestersbach, R., Bhakdi, S., Suttorp, N., and Seeger, W. 1997. Human endothelial cell activation and mediator release in response to the bacterial exotoxins Escherichia coli hemolysin and staphylococcal alpha‐toxin. J. Immunol. 159:1909‐1916.
   Jaffe, E.A., Nachman, R.L., Becker, C.G., and Minick, C.R. 1973a. Culture of human endothelial cells derived from umbilical veins: Identification by morphologic and immunologic criteria. J. Clin. Invest. 52:2745‐2756.
   Jaffe, E.A., Hoyer, L.W., and Nachman, R.L. 1973b. Synthesis of antihemophilic factor antigen by cultured human endothelial cells. J. Clin. Invest. 52:2757‐2764.
   Jaffe, E.A., Hoyer, L.W., and Nachman, R.L. 1974. Synthesis of von Willebrand factor by cultured human endothelial cells. Proc. Natl. Acad. Sci. U.S.A. 71:1906‐1909.
   Kleinman, H.K. and Cid, M.C. 1998. Preparation of endothelial cells. In Current Protocols in Cell Biology (J. Bonifacino, M. Dasso, J.B. Harford, J. Lippincott‐Schwartz, and K.M. Yamada, eds.) pp. 2.3.1‐2.3.6. John Wiley & Sons, New York, N.Y.
   Kubota, Y., Kleinman, H.K., Martin, G.R., and Lawley, T.J. 1988. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary‐like structures. J. Cell. Biol. 107:1589‐1598.
   Massey, R.C., Kantzanou, M.N., Fowler, T., Day, N.P., Schofield, K., Wann, E.R., Berendt, A.R., Höök, M., and Peacock, S.J. 2001. Fibronectin‐binding protein A of Staphylococcus aureus has multiple, substituting, binding regions that mediate adherence to fibronectin and invasion of endothelial cells. Cell Microbiol. 3:839‐851.
   Menzies, B.E. and Kourteva, I. 1998. Internalization of Staphylococcus aureus by endothelial cells induces apoptosis. Infect. Immun. 66:5994‐5998.
   Nachman, R.L. and Jaffe, E.A. 2004. Endothelial cell culture: Beginnings of modern vascular biology. J. Clin. Invest. 114:1037‐1040.
   Oh, P., Li, Y., Yu, J., Durr, E., Krasinska, K.M., Carver, L.A., Testa, J.E., and Schnitzer, J.E. 2004. Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue‐specific therapy. Nature 429:629‐635.
   Peacock, S.J., Foster, T.J., Cameron, B.J., and Berendt, A.R. 1999. Bacterial fibronectin‐binding proteins and endothelial cell surface fibronectin mediate adherence of Staphylococcus aureus to resting human endothelial cells. Microbiology 145:3477‐3486.
   Prasadarao, N.V., Wass, C.A., and Kim, K.S. 1996. Endothelial cell GlcNAc beta 1‐4GlcNAc epitopes for outer membrane protein A enhance traversal of Escherichia coli across the blood‐brain barrier. Infect. Immun. 64:154‐160.
   Prasadarao, N.V., Srivastava, P.K., Rudrabhatla, R.S., Kim, K.S., Huang, S.H., and Sukumaran, S.K. 2003. Cloning and expression of the Escherichia coli K1 outer membrane protein A receptor, a gp96 homologue. Infect. Immun. 71:1680‐1688.
   Sahni, S.K. 2006. Endothelial cell infection and hemostasis. Thromb. Res. Epub ahead of print.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library