Metastatic Intra‐Axial Neoplasia

Annette O. Nusbaum1, Scott W. Atlas2

1 New York Presbyterian Hospital, New York, New York, 2 Stanford University Medical Center, Stanford, California
Publication Name:  Current Protocols in Magnetic Resonance Imaging
Unit Number:  Unit A3.1
DOI:  10.1002/0471142719.mia0301s00
Online Posting Date:  May, 2001
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

The role of MRI imaging in the metastatic work‐up is to detect the spread of tumor to the brain parenchyma, and define the location. Intravenous contrast (gadolinium‐DTPA) provides the greatest sensitivity for detecting brain lesions and is almost always indicated except when there is no intravenous access. This unit presents a for imaging intra‐axial brain metastases and specific modifications are discussed for the case of metastatic brain tumors demonstrating evidence of hemorrhage. The sequences described in this unit are based on 1.5 T scanner (Echospeed GE Medical Systems, Milwaukee, Wisconsin), but can be expected to be equally applicable to other field strengths and scanners from other manufacturers.

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Basic Protocol 1: Rule Out (R/O) Non‐Hemorrhagic Metastatic Disease
  • Alternate Protocol 1: R/O Hemorrhagic Metastatic Disease/Metastatic Melanoma
  • Commentary
  • Literature Cited
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Rule Out (R/O) Non‐Hemorrhagic Metastatic Disease

  Materials
  • Normal saline (0.9% NaCl), sterile
  • Intravenous contrast agent (e.g., Magnevist, Omniscan, or Prohance)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Atlas, S.W. and Lavi, E. 1996. Intra‐axial brain tumors. In Magnetic Resonance Imaging of the Brain and Spine, 2nd ed. (S.W. Atlas, ed.) pp. 315‐422. Lippincott‐Raven, Philadelphia.
   Atlas, S.W. and Thulborn, K.R. 1998. MR detection of hyperacute parenchymal hemorrhage of the brain. Am. J. Neuroradiol. 19:1471‐1477.
   Atlas, S.W., Grossman, R.I., Gomori, J.M., Guerry, D., Hackney, D.B., Goldberg, H.I., Zimmerman, R.A., and Bilaniuk, L.T. 1987. MR imaging of intracranial metastatic melanoma. J. Comput. Assist. Tomogr. 11:577‐582.
   Atlas, S.W., Mark, A.S., Grossman, R.I., and Gomori, J.M. 1988. Intracranial hemorrhage: Gradient‐echo MR imaging at 1.5 T. Radiology. 168:803‐807.
   Davey, P. 1999. Brain metastases. Curr. Probl. Cancer 23:59‐98.
   Healy, M.E., Hesselink, J.R., Press, G.A., and Middleton, M.S. 1987. Increased detection of intracranial metastases with intravenous Gd‐DTPA. Radiology. 165:619‐624.
   Johnson, J.D. and Young, B. 1996. Demographics of brain metastasis. Neurosurg. Clin. N. Am. 7:337‐344.
   Shellock, F.G. 1996. Pocket Guide to MR Procedures and Metallic Objects. Lippincott‐Raven, Philadelphia.
   Thulborn, K.R. and Atlas, S.W. 1996. Intracranial hemorrhage. In Magnetic Resonance Imaging of the Brain and Spine, 2nd ed. (S.W. Atlas, ed.) pp. 265‐314. Lippincott‐Raven, Philadelphia.
   Thulborn, K.R., Sorensen, A.G., Kowall, N.W., McKee, A., Lai, A., McKinstry, R.C., Moore, J., Rosen, B.R., and Brady, T.J. 1990. The role of ferritin and hemosiderin in the MR appearance of cerebral hemorrhage: A histopathologic biochemical study in rats. Am. J. Neuroradiol. 2:291‐297.
   Yuh, W.T., Tali, E.T., Nguyen, H.D., Simonson, T.M., Mayr, N.A., and Fisher, D.J. 1995. The effect of contrast dose, imaging time, and lesion size in the detection of intracerebral metastasis. Am. J. Neuroradiol. 16:373‐380.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library