Head and Neck MRA at 3.0T

Matt A. Bernstein 1, John Huston1

1 Department of Radiology, Mayo Clinic, College of Medicine, Rochester, Minnesota
Publication Name:  Current Protocols in Magnetic Resonance Imaging
Unit Number:  Unit A7.8
DOI:  10.1002/0471142719.mia0708s15
Online Posting Date:  June, 2008
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


3.0T MRI scanners are becoming more widely used in clinical practice, particularly for neurological applications. The increased signal‐to‐noise ratio (SNR) provided by 3.0T compared to 1.5T is particularly useful for applications like magnetic resonance angiography (MRA). A protocol to image the intracranial circulation with 3‐D time of flight (3DTOF), and a protocol to image the carotid, vertebral, and basilar arteries with contrast‐enhanced MRA are presented. The increased SNR at 3.0T is used to increase the spatial resolution. For the 3DTOF exam, the acquisition time is also reduced with the use of parallel imaging.

Keywords: 3T; MRA; head; neck; carotid; Circle of Willis

PDF or HTML at Wiley Online Library

Table of Contents

  • Basic Protocol 1: Imaging Intracranial Circulation at 3.0T
  • Basic Protocol 2: Imaging of the Carotid‐Vertebral‐Basilar System Using Gadolinium Bolus
  • Commentary
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


Basic Protocol 1: Imaging Intracranial Circulation at 3.0T

  • 20 ml of gadolinium chelate contrast agent and 50 ml of saline
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Bernstein, M.A., Huston, J. III, Lin, C., Gibbs, G.F., and Felmlee, J.P. 2001. High‐resolution intracranial and cervical MRA at 3.0T: Technical considerations and initial experience. Magn. Reson. Med. 46:955‐962.
   Bernstein, M.A., King, K.F., and Zhou, X.J. 2004. Handbook of MRI pulse sequences. Elsevier Academic Press, Amsterdam.
   Drangova, M. and Pelc, N.J. 1996. Artifacts and signal loss due to flow in the presence of B0 inhomogeneity. Magn. Reson. Med. 35:126‐130.
   Earls, J.P., Rofsky, N.M., DeCorato, D.R., Krinsky, G.A., and Weinreb, J.C. 1997. Hepatic arterial‐phase dynamic gadolinium‐enhanced MR imaging: Optimization with a test examination and a power injector. Radiology 202:268‐273.
   Hoult, D.I. 2000. Sensitivity and power deposition in a high‐field imaging experiment. J. Magn. Reson. Imaging 12:46‐67.
   Huston, J. III, Fain, S.B., Wald, J.T., Luetmer, P.H., Rydberg, C.H., Covarrubias, D.J., Riederer, S.J., Bernstein, M.A., Brown, R.D., Meyer, F.B., Bower, T.C., and Schleck, C.D. 2001. Carotid artery: Elliptic centric contrast‐enhanced MR angiography compared with conventional angiography radiology. Radiology 218:138‐143.
   Lin, C., Bernstein, M.A., Gibbs, G.F., and Huston, J. III. 2003. Reduction of RF power for magnetization transfer with optimized application of RF pulses in k‐space. Magn. Reson. Med. 50:114‐121.
   Lin, C., Bernstein, M.A., and Huston, J. III, 2004. Improvements of 3DTOF MRA at 3.0T. In Proceedings of the 12th International Society for Magnetic Resonance in Medicine, Kyoto, Japan, p. 2573. ISMRM, Berkeley, Calif.
   Maki, J.H., Prince, M.R., Londy, F.J., and Chenevert, T.L. 1996. The effects of time varying intravascular signal intensity and k‐space acquisition order on three‐dimensional MR angiography image quality. J. Magn. Reson. Imaging 6:642‐651.
   Mistretta, C.A., Grist, T.M., Korosec, F.R., Frayne, R., Peters, D.C., Mazaheri, Y., and Carrol, T.J. 1998. 3D time‐resolved contrast‐enhanced MR DSA: Advantages and tradeoffs. Magn. Reson. Med. 40:571‐581.
   Parker, D.L., Yuan, C., and Blatter, D.D. 1991. MR angiography by multiple thin slab 3D acquisition. Magn. Reson. Med. 17:434‐451.
   Parker, D.L., Buswell, H.R., Goodrich, K.C., Alexander, A.L., Keck, N., and Tsuruda, J.S. 1995. The application of magnetization transfer to MR angiography with reduced total power. Magn. Reson. Med. 34:283‐286.
   Prince, M.R., Grist, T.M., and Debatin, J.F. 1999. 3D Contrast MR Angiography. Springer, Berlin.
   Pruessmann, K.P., Weiger, M., Scheidegger, M.B., and Boesiger, P. 1999. SENSE: Sensitivity Encoding for Fast MRI. Magn. Reson. Med. 42:952‐962.
   Riederer, S.J., Bernstein, M.A., Breen, J.F., Busse, R.F., Ehman, R.L., Fain, S.B., Hulshizer, T.C., Huston, J. III, King, B.F., Kruger, D.G., Rossman, P.J., and Shah, S. 2000. Three‐dimensional contrast‐enhanced MR angiography with real‐time fluoroscopic triggering: Design specifications and technical reliability in 330 patient studies. Radiology 215:584‐593.
   Shellock, F.G. 2005. Reference Manual for Magnetic Resonance Safety, Implants and Devices, 2005 edition. Biomedical Research Publishing Group, Los Angeles, Calif.
   Willinek, W.A., Gieseke, J., Conrad, R., Strunk, H., Hoogeveen, R., von Falkenhausen, M., Keller, E., Urbach, H., Kuhl, C.K., and Schild, H.H. 2002. Randomly segmented central k‐space ordering in high‐spatial‐resolution contrast‐enhanced MR angiography of the supraaortic arteries: Initial experience. Radiology 225:583‐588.
   Wilman, A.H., Riederer, S.J., King, B.F., Debbins, J.P., Rossman, P.J., and Ehman, R.L. 1997. Fluoroscopically triggered contrast‐enhanced three‐dimensional MR angiography with elliptical centric view order: application to the renal arteries. Radiology 205:137‐146.
PDF or HTML at Wiley Online Library