Myocardial Perfusion and Viability

Michael Jerosch‐Herold1, Arthur E. Stillman1

1 University of Minnesota, Minneapolis, Minnesota
Publication Name:  Current Protocols in Magnetic Resonance Imaging
Unit Number:  Unit A11.3
DOI:  10.1002/0471142719.mia1103s00
Online Posting Date:  May, 2001
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Both first‐pass perfusion studies and imaging of delayed hyperenhancement can be combined in one patient exam. The MRI protocols for myocardial perfusion and viability assessment are presented together in this unit due to the complimentary information that is obtained with both protocols. Also, the imaging techniques used for both protocols are closely related. The first protocol assesses the functional severity of coronary artery lesions, while the second, used in addition to first basic protocol, is used in patient presents with symptoms of myocardial infarction or post‐coronary revascularization. The procedures are useful in determining the presence and extent of nonviable myocardium.

PDF or HTML at Wiley Online Library

Table of Contents

  • Basic Protocol 1: Imaging Myocardial Perfusion During First‐Pass Contrast‐Enhancement
  • Basic Protocol 2: Imaging Myocardial Viability
  • Commentary
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


Basic Protocol 1: Imaging Myocardial Perfusion During First‐Pass Contrast‐Enhancement

  • Normal saline (0.9% NaCl), sterile
  • Extravascular GD‐DTPA contrast agent (e.g., Magnevist or Omniscan)
  • 16‐G i.v. needle and injection line
  • Disposable syringes for power injector
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
  Bassingthwaigthe, J.B., Raymond, G.R., and Chan, J.I. 1993. Principles tracer kinetics. In Nuclear Cardiology: State of the Art and Future Directions (B. L. Zaret and G. A. Beller, eds.) pp. 3‐23. Mosby‐Year Book, St. Louis.
   Burstein, D., Taratuta, E., and Manning, W.J. 1991. Factors in myocardial “perfusion” imaging with ultrafast MRI and Gd‐DTPA administration. Magn. Reson. Med. 20:299‐305.
   Ding, S., Wolff, S.D., and Epstein, F.H. 1998. Improved coverage in dynamic contrast‐enhanced cardiac MRI using interleaved gradient‐echo EPI. Magn. Reson. Med. 39:514‐519.
   Epstein, F.H. and Arai, A.E. 2000. Optimization of fast cardiac imaging using an echo‐train readout. J. Magn. Reson. Imaging 11:75‐80.
   Fischer, S.E. and Lorenz, C.H. 1997. Determining heart muscle perfusion by magnetic resonance tomography progressing to clinical application. Radiologe 37:366‐371.
   Jerosch‐Herold, M. and Wilke, N. 1997. MR first pass imaging: Quantitative assessment of transmural perfusion and collateral flow. Int. J. Card. Imaging 13:205‐218.
   Jerosch‐Herold, M., Wilke, N., and Stillman, A.E. 1998. Magnetic resonance quantification of the myocardial perfusion reserve with a Fermi function model for constrained deconvolution. Med. Phys. 25:73‐84.
   Jerosch‐Herold, M., Wilke, N., Wang, Y., Gong, G.R., Mansoor, A.M., Huang, H., Gurchumelidze, S., and Stillman, A.E. 1999. Direct comparison of an intravascular and an extracellular contrast agent for quantification of myocardial perfusion. Cardiac MRI Group. Int. J. Card. Imaging 15:453‐464.
   Judd, R.M., Lugo‐Olivieri, C.H., Arai, M., Kondo, T., Croisille, P., Lima, J.A., Mohan, V., Becker, L.C., and Zerhouni, E.A. 1995. Physiological basis of myocardial contrast enhancement in fast magnetic resonance images of 2‐day‐old reperfused canine infarcts. Circulation 92:1902‐1910.
   Kim, R.J., Chen, E.L., Lima, J.A., and Judd, R.M. 1996. Myocardial Gd‐DTPA kinetics determine MRI contrast enhancement and reflect the extent and severity of myocardial injury after acute reperfused infarction. Circulation 94:3318‐3326.
   Kim, R.J., Fieno, D.S., Parrish, T.B., Harris, K., Chen, E.L., Simonetti, O., Bundy, J., Finn, J.P., Klocke, F.J., and Judd, R.M. 1999. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100:1992‐2002.
   Kroll, K., Wilke, N., Jerosch‐Herold, M., Wang, Y., Zhang, Y., Bache, R.J., and Bassingthwaigthe, J.B. 1996. Accuracy of modeling of regional myocardial flows from residue functions of an intravascular indicator. Am. J. Physiol. 40:H1643‐H1655.
   Lima, J.A., Judd, R.M., Bazille, A., Schulman, S.P., Atalar, E., and Zerhouni, E.A. 1995. Regional heterogeneity of human myocardial infarcts demonstrated by contrast‐enhanced MRI. Potential mechanisms. Circulation 92:1117‐1125.
   Manning, W.J., Atkinson, D.J., Grossman, W., Paulin, S., and Edelman, R.R. 1991. First‐pass nuclear magnetic resonance imaging studies using gadolinium‐DTPA in patients with coronary artery disease. J. Am Coll. Cardiol. 18:959‐965.
   Pereira, R.S., Prato, F.S., Sykes, J., and Wisenberg, G. 1999. Assessment of myocardial viability using MRI during a constant infusion of Gd‐DTPA: further studies at early and late periods of reperfusion. Magn. Reson. Med. 42:60‐68.
   Pereira, R.S., Prato, F.S., Wisenberg, G., and Sykes, J. 1996. The determination of myocardial viability using Gd‐DTPA in a canine model of acute myocardial ischemia and reperfusion. Magn. Reson. Med. 36:684‐693.
   Reeder, S.B., Atalar, E., Faranesh, A.Z., and McVeigh, E.R. 1999. Multi‐echo segmented k‐space imaging: An optimized hybrid sequence for ultrafast cardiac imaging. Magn. Reson. Med. 41:375‐385.
   Rochitte, C.E., Lima, J.A., Bluemke, D.A., Reeder, S.B., McVeigh, E.R., Furuta, T., Becker, L.C., and Melin, J.A. 1998. Magnitude and time course of microvascular obstruction and tissue injury after acute myocardial infarction. Circulation 98:1006‐1014.
   Rogers, W.J., Jr., Kramer, C.M., Geskin, G., Hu, Y.L., Theobald, T.M., Vido, D.A., Petruolo, S., and Reichek, N. 1999. Early contrast‐enhanced MRI predicts late functional recovery after reperfused myocardial infarction. Circulation. 99:744‐750.
   Rossum, A.C.v., Visser, F.C., Van Eenige, M.J., Sprenger, M., Valk, J., Verheugt, F.W., and Roos, J.P. 1990. Value of gadolinium‐dethylene‐triamine pentaacetic acid dynamics in magnetic resonance imaging of acute myocardial infarction with occluded and reperfused coronary arteries after thrombolysis. Am. J. Cardiol. 65:845‐851.
   Simonetti, O., Kim, R.J., Fieno, D.S., Hillenbrand, H., Wu, E., Bundy, J.M., Finn, J.P., and Rudd, R.M. 2000. An improved MRI technique for the visualization of myocardial infarction. Radiology. 218:215‐223.
   Tong, C.Y., Prato, F.S., Wisenberg, G., Lee, T.Y., Carroll, E., Sandler, D., and Wills, J. 1993a. Techniques for the measurement of the local myocardial extraction efficiency for inert diffusible contrast agents such as gadopentate dimeglumine. Magn. Reson. Med. 30:332‐336.
   Tong, C.Y., Prato, F.S., Wisenberg, G., Lee, T.Y., Carroll, E., Sandler, D., Wills, J., and Drost, D. 1993b. Measurement of the extraction efficiency and distribution volume for Gd‐DTPA in normal and diseased canine myocardium. Magn. Reson. Med. 30:337‐346.
   Tsekos, N.V., Zhang, Y., Merkle, H., Wilke, N., Jerosch‐Herold, M., Stillman, A., and Ugurbil, K. 1995. Fast anatomical imaging of the heart and assessment of myocardial perfusion with arrhythmia insensitive magnetization preparation. Magn. Reson. Med. 34:530‐536.
   Wilke, N. and Jerosch‐Herold, M. 1998. Assessing myocardial perfusion in coronary artery disease with magnetic resonance first‐pass imaging. Cardiol. Clin. 16:227‐246.
   Wilke, N., Jerosch‐Herold, M., Stillman, A.E., Kroll, K., Tsekos, N., Merkle, H., Parrish, T., Hu, X., Wang, Y., Bassingthwaigthe, J., et al. 1994. Concepts of myocardial perfusion imaging in magnetic resonance imaging. Magn. Reson. Q. 10:249‐286.
   Wilke, N., Jerosch‐Herold, M., Wang, Y., Huang, Y., Christensen, B.V., Stillman, A.E., Ugurbil, K., McDonald, K., and Wilson, R.F. 1997. Myocardial perfusion reserve: Assessment with multisection, quantitative, first‐pass MR imaging. Radiology. 204:373‐384.
   Wilke, N., Simm, C., Zhang, J., Ellermann, J., Ya, X., Merkle, H., Path, G., Ludemann, H., Bache, R.J., and Ugurbil, K. 1993. Contrast‐enhanced first pass myocardial perfusion imaging: Correlation between myocardial blood flow in dogs at rest and during hyperemia. Magn. Reson. Med. 29:485‐497.
   Wu, K.C., Kim, R.J., Bluemke, D.A., Rochitte, C.E., Zerhouni, E.A., Becker, L.C., and Lima, J.A. 1998a. Quantification and time course of microvascular obstruction by contrast‐enhanced echocardiography and magnetic resonance imaging following acute myocardial infarction and reperfusion. J. Am. Coll. Cardiol. 32:1756‐1764.
   Wu, K.C., Zerhouni, E.A., Judd, R.M., Lugo‐Olivieri, C.H., Barouch, L.A., Schulman, S.P., Blumenthal, R.S., and Lima, J.A. 1998b. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 97:765‐772.
Internet Resources
  This web site is addressed at users of GE scanners and provides specifics on sequences and techniques for imaging of myocardial perfusion and viability.
  The authors' web site has a document in Adobe Acrobat format with specific instructions on how to perform myocardial perfusion studies on a Siemens Vision scanner.
  This is a useful site for readers interested in state‐of‐the‐art tracer kinetic analysis that has been applied for analysis of MRI perfusion data. The National Simulation Resource is an NIH‐funded resource.
PDF or HTML at Wiley Online Library