Characterization and Validation of Cre‐Driver Mouse Lines

Françoise Gofflot1, Olivia Wendling2, Nathalie Chartoire3, Marie‐Christine Birling3, Xavier Warot4, Johan Auwerx4

1 Université Catholique de Louvain, Life Science Institute, Louvain‐la‐Neuve, Belgium, 2 Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université Louis Pasteur, Illkirch, France, 3 Institut Clinique de la Souris (ICS), Illkirch, France, 4 Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Publication Name:  Current Protocols in Mouse Biology
Unit Number:   
DOI:  10.1002/9780470942390.mo100103
Online Posting Date:  March, 2011
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Conditional gene manipulations in mice are increasingly popular strategies in biomedical research. These approaches rely on the production of conditional genetically engineered mutant mouse (GEMM) lines with mutations in protein‐encoding genes. These conditional GEMMs are then bred with one or several transgenic mouse lines expressing a site‐specific recombinase, most often the Cre recombinase, in a tissue‐specific manner. Conditional GEMMs can only be exploited if Cre transgenic mouse lines are available to generate somatic mutations, and thus the number of Cre transgenic lines has significantly increased over the last 15 years. Once produced, these transgenic lines must be validated for reliable, efficient, and specific Cre expression and Cre‐mediated recombination. In this overview, the minimum level of information that is ideally required to validate a Cre‐driver transgenic line is first discussed. The vagaries associated with validation procedures are considered next, and some solutions are proposed to assess the expression and activity of constitutive or inducible Cre recombinase before undertaking extensive breeding experiments and exhaustive phenotyping. Curr. Protoc. Mouse Biol. 1:1‐15. © 2011 by John Wiley & Sons, Inc.

Keywords: site‐specific recombination; conditional mutagenesis; inducible Cre; functional genomic

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Specificity and Efficiency of Cre Expression
  • Specificity and Efficiency of Cre‐Mediated Deletion
  • Anatomical Pattern of Cre‐Mediated Deletion
  • Additional or Alternative Procedures to Detect Cre Expression
  • Phenotypic Characterization of Cre Lines
  • Summary
  • Acknowledgments
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Akagi, K. , Sandig, V. , Vooijs, M. , Van der Valk, M. , Giovannini, M. , Strauss, M. , and Berns, A. 1997. Cre‐mediated somatic site‐specific recombination in mice. Nucleic Acids Res. 25:1766‐1773.
   Argmann, C.A. , Chambon, P. , and Auwerx, J. 2005. Mouse phenogenomics: The fast track to “systems metabolism”. Cell Metab. 2:349‐360.
   Austin, C.P. , Battey, J.F. , Bradley, A. , Bucan, M. , Capecchi, M. , Collins, F.S. , Dove, W.F. , Duyk, G. , Dymecki, S. , Eppig, J.T. , Grieder, F.B. , Heintz, N. , Hicks, G. , Insel, T.R. , Joyner, A. , Koller, B.H. , Lloyd, K.C. , Magnuson, T. , Moore, M.W. , Nagy, A. , Pollock, J.D. , Roses, A.D. , Sands, A.T. , Seed, B. , Skarnes, W.C. , Snoddy, J. , Soriano, P. , Stewart, D.J. , Stewart, F. , Stillman, B. , Varmus, H. , Varticovski, L. , Verma, I.M. , Vogt, T.F. , von Melchner, H. , Witkowski, J. , Woychik, R.P. , Wurst, W. , Yancopoulos, G.D. , Young, S.G. , and Zambrowicz, B. 2004. The knockout mouse project. Nat. Genet. 36:921‐924.
   Auwerx, J. , Avner, P. , Baldock, R. , Ballabio, A. , Balling, R. , Barbacid, M. , Berns, A. , Bradley, A. , Brown, S. , Carmeliet, P. , Chambon, P. , Cox, R. , Davidson, D. , Davies, K. , Duboule, D. , Forejt, J. , Granucci, F. , Hastie, N. , de Angelis, M.H. , Jackson, I. , Kioussis, D. , Kollias, G. , Lathrop, M. , Lendahl, U. , Malumbres, M. , von Melchner, H. , Müller, W. , Partanen, J. , Ricciardi‐Castagnoli, P. , Rigby, P. , Rosen, B. , Rosenthal, N. , Skarnes, B. , Stewart, A.F. , Thornton, J. , Tocchini‐Valentini, G. , Wagner, E. , Wahli, W. , and Wurst, W. 2004. The European dimension for the mouse genome mutagenesis program. Nat. Genet. 36:925‐927.
   Birling, M.C. , Gofflot, F. , and Warot, X. 2009. Site‐specific recombinases for manipulation of the mouse genome. Methods Mol. Biol. 561:245‐263.
   Bookout, A.L. , Cummins, C.L. , Mangelsdorf, D.J. , Pesola, J.M. , and Kramer, M.F. 2006. High‐throughput real‐time quantitative reverse transcription PCR. Curr. Protoc. Mol. Biol. 73:15.8.1‐15.8.28.
   Branda, C.S. and Dymecki, S.M. 2004. Talking about a revolution: The impact of site‐specific recombinases on genetic analyses in mice. Dev Cell 6:7‐28.
   Bustin, S.A. , Benes, V. , Garson, J.A. , Hellemans, J. , Huggett, J. , Kubista, M. , Mueller, R. , Nolan, T. , Pfaffl, M.W. , Shipley, G.L. , Vandesompele, J. , and Wittwer, C.T. 2009. The MIQE guidelines: Minimum information for publication of quantitative real‐time PCR experiments. Clin. Chem. 55:611‐622.
   Champy, M.F. , Selloum, M. , Piard, L. , Zeitler, V. , Caradec, C. , Chambon, P. , and Auwerx, J. 2004. Mouse functional genomics requires standardization of mouse handling and housing conditions. Mamm. Genome 15:768‐783.
   Chirgwin, J.M. , Przybyla, A.E. , MacDonald, R.J. , and Rutter, W.J. 1979. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294‐5299.
   Chotteau‐Lelievre, A. , Dolle, P. , and Gofflot, F. 2006. Expression analysis of murine genes using in situ hybridization with radioactive and nonradioactively labeled RNA probes. Methods Mol. Biol. 326:61‐87.
   Collins, F.S. , Rossant, J. , and Wurst, W. 2007. A mouse for all reasons. Cell 128:9‐13.
   Danielian, P.S. , Muccino, D. , Rowitch, D.H. , Michael, S.K. , and McMahon, A.P. 1998. Modification of gene activity in mouse embryos in utero by a tamoxifen‐inducible form of Cre recombinase. Curr. Biol. 8:1323‐1326.
   Dupe, V. , Davenne, M. , Brocard, J. , Dolle, P. , Mark, M. , Dierich, A. , Chambon, P. , and Rijli, F.M. 1997. In vivo functional analysis of the Hoxa‐1 3′ retinoic acid response element (3′RARE). Development 124:399‐410.
   Feil, R. , Brocard, J. , Mascrez, B. , LeMeur, M. , Metzger, D. , and Chambon, P. 1996. Ligand‐activated site‐specific recombination in mice. Proc. Natl. Acad. Sci. U.S.A. 93:10887‐10890.
   Feil, R. , Wagner, J. , Metzger, D. , and Chambon, P. 1997. Regulation of Cre recombinase activity by mutated estrogen receptor ligand‐binding domains. Biochem. Biophys. Res. Commun. 237:752‐757.
   Forni, P.E. , Scuoppo, C. , Imayoshi, I. , Taulli, R. , Dastru, W. , Sala, V. , Betz, U.A. , Muzzi, P. , Martinuzzi, D. , Vercelli, A.E. , Kageyama, R. , and Ponzetto, C. 2006. High levels of Cre expression in neuronal progenitors cause defects in brain development leading to microencephaly and hydrocephaly. J. Neurosci. 26:9593‐9602.
   Gofflot, F. , Chartoire, N. , Vasseur, L. , Heikkinen, S. , Dembele, D. , Le Merrer, J. , and Auwerx, J. 2007. Systematic gene expression mapping clusters nuclear receptors according to their function in the brain. Cell 131:405‐418.
   Hayashi, S. and McMahon, A.P. 2002. Efficient recombination in diverse tissues by a tamoxifen‐inducible form of Cre: A tool for temporally regulated gene activation/inactivation in the mouse. Dev. Biol. 244:305‐318.
   Indra, A.K. , Warot, X. , Brocard, J. , Bornert, J.M. , Xiao, J.H. , Chambon, P. , and Metzger, D. 1999. Temporally‐controlled site‐specific mutagenesis in the basal layer of the epidermis: Comparison of the recombinase activity of the tamoxifen‐inducible Cre‐ER(T) and Cre‐ER(T2) recombinases. Nucleic Acids Res. 27:4324‐4327.
   Kaelin, C.B. , Gong, L. , Xu, A.W. , Yao, F. , Hockman, K. , Morton, G.J. , Schwartz, M.W. , Barsh, G.S. , and MacKenzie, R.G. 2006. Signal transducer and activator of transcription (stat) binding sites but not stat3 are required for fasting‐induced transcription of agouti‐related protein messenger ribonucleic acid. Mol. Endocrinol. 20:2591‐2602.
   Kellendonk, C. , Tronche, F. , Casanova, E. , Anlag, K. , Opherk, C. , and Schutz, G. 1999. Inducible site‐specific recombination in the brain. J. Mol. Biol. 285:175‐182.
   Knoll, J.H. , Lichter, P. , Bakdounes, K. , and Eltoum, I.‐E. A. 2007. In situ hybridization and detection using nonisotopic probes. Curr. Protoc. Mol. Biol. 79:14.7.1‐14.7.17.
   Lakso, M. , Sauer, B. , Mosinger, B. Jr. , Lee, E.J. , Manning, R.W. , Yu, S.H. , Mulder, K.L. , and Westphal, H. 1992. Targeted oncogene activation by site‐specific recombination in transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 89:6232‐6236.
   Lewandoski, M. 2001. Conditional control of gene expression in the mouse. Nat. Rev. Genet. 2:743‐755.
   Lifschitz‐Mercer, B. , Sheinin, Y. , Ben‐Meir, D. , Bramante‐Schreiber, L. , Leider‐Trejo, L. , Karby, S. , Smorodinsky, N.I. , and Lavi, S. 2001. Protein phosphatase 2Calpha expression in normal human tissues: An immunohistochemical study. Histochem. Cell Biol. 116:31‐39.
   Lobe, C.G. , Koop, K.E. , Kreppner, W. , Lomeli, H. , Gertsenstein, M. , and Nagy, A. 1999. Z/AP, a double reporter for cre‐mediated recombination. Dev. Biol. 208:281‐292.
   Lusis, A.J. , Yu, J. , and Wang, S.S. 2007. The problem of passenger genes in transgenic mice. Arterioscler Thromb. Vasc. Biol. 27:2100‐2103.
   Mandillo, S. , Tucci, V. , Hölter, S.M. , Meziane, H. , Banchaabouchi, M.A. , Kallnik, M. , Lad, H.V. , Nolan, P.M. , Ouagazzal, A.M. , Coghill, E.L. , Gale, K. , Golini, E. , Jacquot, S. , Krezel, W. , Parker, A. , Riet, F. , Schneider, I. , Marazziti, D. , Auwerx, J. , Brown, S.D. , Chambon, P. , Rosenthal, N. , Tocchini‐Valentini, G. , Wurst, W. 2008. Reliability, robustness, and reproducibility in mouse behavioral phenotyping: A cross‐laboratory study. Physiol. Genomics 34:243‐255.
   Mascrez, B. , Mark, M. , Dierich, A. , Ghyselinck, N.B. , Kastner, P. , and Chambon, P. 1998. The RXRalpha ligand‐dependent activation function 2 (AF‐2) is important for mouse development. Development 125:4691‐4707.
   Meseguer, A. and Catterall, J.F. 1987. Mouse kidney androgen‐regulated protein messenger ribonucleic acid is expressed in the proximal convoluted tubules. Mol. Endocrinol. 1:535‐541.
   Metzger, D. and Chambon, P. 2001. Site‐ and time‐specific gene targeting in the mouse. Methods 24:71‐80.
   Nagy, A. 2000. Cre recombinase: The universal reagent for genome tailoring. Genesis 26:99‐109.
   Nagy, A. , Mar, L. , and Watts, G. 2009. Creation and use of a cre recombinase transgenic database. Methods Mol. Biol. 530:1‐14.
   Pinto, D. , Robine, S. , Jaisser, F. , El Marjou, F.E. , and Louvard, D. 1999. Regulatory sequences of the mouse villin gene that efficiently drive transgenic expression in immature and differentiated epithelial cells of small and large intestines. J. Biol. Chem. 274:6476‐6482.
   Rajewsky, K. , Gu, H. , Kuhn, R. , Betz, U.A. , Muller, W. , Roes, J. , and Schwenk, F. 1996. Conditional gene targeting. J. Clin. Invest. 98:600‐603.
   Robine, S. , Jaisser, F. , and Louvard, D. 1997. Epithelial cell growth and differentiation. IV. Controlled spatiotemporal expression of transgenes: New tools to study normal and pathological states. Am. J. Physiol. 273:G759‐G762.
   Sauer, B. and Henderson, N. 1989. Cre‐stimulated recombination at loxP‐containing DNA sequences placed into the mammalian genome. Nucleic Acids Res. 17:147‐161.
   Schmidt‐Supprian, M. and Rajewsky, K. 2007. Vagaries of conditional gene targeting. Nat. Immunol. 8:665‐668.
   Schwenk, F. , Kuhn, R. , Angrand, P.O. , Rajewsky, K. , and Stewart, A.F. 1998. Temporally and spatially regulated somatic mutagenesis in mice. Nucleic Acids Res. 26:1427‐1432.
   Soriano, P. 1999. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21:70‐71.
   Thomas, C. , Pellicciari, R. , Pruzanski, M. , Auwerx, J. , and Schoonjans, K. 2008. Targeting bile‐acid signalling for metabolic diseases. Nat. Rev. Drug Discov. 7:678‐693.
   Thomas, C. , Gioiello, A. , Noriega, L. , Strehle, A. , Oury, J. , Rizzo, G. , Macchiarulo, A. , Yamamoto, H. , Mataki, C. , Pruzanski, M. , Pellicciari, R. , Auwerx, J. , and Schoonjans, K. 2009. TGR5‐mediated bile acid sensing controls glucose homeostasis. Cell Metab. 10:167‐177.
   Vasioukhin, V. , Degenstein, L. , Wise, B. , and Fuchs, E. 1999. The magical touch: Genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin. Proc. Natl. Acad. Sci. U.S.A. 96:8551‐8556.
   Vooijs, M. , Jonkers, J. , and Berns, A. 2001. A highly efficient ligand‐regulated Cre recombinase mouse line shows that LoxP recombination is position dependent. EMBO Rep. 2:292‐297.
   Weber, P. , Metzger, D. , and Chambon, P. 2001. Temporally controlled targeted somatic mutagenesis in the mouse brain. Eur. J. Neurosci. 14:1777‐1783.
PDF or HTML at Wiley Online Library