Arterial Pressure Monitoring in Mice

Xin Zhao1, David Ho1, Shumin Gao1, Chull Hong1, Dorothy E. Vatner1, Stephen F. Vatner1

1 The University of Medicine & Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey
Publication Name:  Current Protocols in Mouse Biology
Unit Number:   
DOI:  10.1002/9780470942390.mo100149
Online Posting Date:  March, 2011
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

The use of mice for the evaluation and study of cardiovascular pathophysiology is growing rapidly, primarily due to the relative ease of developing genetically engineered mouse models. Arterial pressure monitoring is central to the evaluation of the phenotypic changes associated with cardiovascular pathology and interventions in these transgenic and knockout models. There are four major techniques for measuring arterial pressure in the mouse: tail‐cuff system, implanted fluid‐filled catheters, Millar catheters, and implanted telemetry systems. Here we provide protocols for their use and discuss the advantages and limitations of each of these techniques. Curr. Protoc. Mouse Biol. 1:105‐122. © 2011 by John Wiley & Sons, Inc.

Keywords: arterial pressure monitoring; mice; methods

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Tail‐Cuff System
  • Basic Protocol 2: Fluid‐Filled Catheter System
  • Basic Protocol 3: Millar Solid‐State Micro‐Pressure Transducer Tipped Catheter
  • Basic Protocol 4: Implanted Telemetry System
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Tail‐Cuff System

  Materials
  • Mice
  • Visitech BP‐2000 series II arterial pressure analysis system: four channel mouse platform, control unit, arterial pressure analysis software

Basic Protocol 2: Fluid‐Filled Catheter System

  Materials
  • Mice
  • Anesthetic of choice (see Table 10.1.4900 and step 2, below)
  • Heparinized saline solution: dilute heparin to 1 U/ml in 0.9% NaCl
  • Catheters
    • PE‐05 tubing (0.28 mm i.d × 0.61 mm o.d) for the carotid artery
    • PE‐08 tubing (0.20 mm i.d. × 0.36 mm o.d.) for the femoral artery
    • Connect either catheter onto RPT‐040 tubing (0.64 mm i.d. × 1.02 mm o.d.) and glue at the connection part with silicon glue
  • Adapter: 23‐G Intramedic luer stub adapter (Becton Dickinson, cat. no. 427565)
  • Animal clippers
  • Surgical instruments
  • Suture: 7‐0 Silk for vessel ligation; 6‐0 nylon for skin closure
  • Customized needle‐wire plug: cut off the plastic part of a 23‐G adapter, using a file to collapse one end completely
  • Solid‐state pressure transducer (Becton‐Dickinson, cat. no. 682018)
  • Signal amplifier (Triton Technology, System 6, model 200; http://www.physiology.com/)
  • Recording system: e.g., Power Lab (ADInstruments, http://www.adinstruments.com), Dataquest (Data Sciences International, http://www.datasci.com), NOTOCORD‐hem (Notocord, http://www.notocord.com), EMKA IOX (EMKA Technologies)
  • Sphygmomanometer (blood pressure cuff of appropriate size to fit transducer; available at pharmacies)
  • 1‐ml and 50‐ml syringe
  • Tether (Harvard Apparatus; counter‐balanced lever arm, PY861‐0023; swivel, PY 856‐1324)
  • PE‐05 tubing for catheter extension on tether

Basic Protocol 3: Millar Solid‐State Micro‐Pressure Transducer Tipped Catheter

  Materials
  • Micromanometer catheter: 1.4F (Millar Instruments, http://www.millarinstruments.com/)
  • Suture: Silk 7‐0 or 6‐0 for vessel ligation
  • Additional reagents and equipment for implantation of fluid‐filled catheter ( protocol 2)

Basic Protocol 4: Implanted Telemetry System

  Materials
  • Telemetry transmitter device (PA‐C20 or PA‐C10) (Data Sciences International, http://www.datasci.com/; also see Fig. )
  • Recording system: e.g., Power Lab (ADInstruments, http://www.adinstruments.com), Dataquest (Data Sciences International, http://www.datasci.com), NOTOCORD‐hem (Notocord, http://www.notocord.com), EMKA IOX (EMKA Technologies)
  • Suture: 7‐0 Silk for vessel ligation, 6‐0 nylon for skin closure, 5‐0 nylon for telemetry device fixation
  • Additional reagents and equipment for implantation of fluid‐filled catheter ( protocol 2)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Carlson, S.H. and Wyss, J.M. 2000. Long‐term telemetric recording of arterial pressure and heart rate in mice fed basal and high NaCl diets. Hypertension 35:E1‐E5.
   Desjardins, F., Lobysheva, I., Pelat, M., Gallez, B., Feron, O., Dessy, C., and Balligand, J.L. 2008. Control of blood pressure variability in caveolin‐1‐deficient mice: Role of nitric oxide identified in vivo through spectral analysis. Cardiovasc. Res. 79:527‐536.
   Doevendans, P.A., Daemen, M.J., de Muinck, E.D., and Smits, J.F. 1998. Cardiovascular phenotyping in mice. Cardiovasc. Res. 39:34‐49.
   Feng, M., Whitesall, S., Zhang, Y., Beibel, M., D'Alecy, L., and DiPetrillo, K. 2008. Validation of volume‐pressure recording tail‐cuff blood pressure measurements. Am. J. Hypertens. 21:1288‐1291.
   Feng, M., Deerhake, M.E., Keating, R., Thaisz, J., Xu, L., Tsaih, S.W., Smith, R., Ishige, T., Sugiyama, F., Churchill, G.A., and DiPetrillo, K. 2009. Genetic analysis of blood pressure in 8 mouse intercross populations. Hypertension 54:802‐809.
   Gross, V. and Luft, F.C. 2003. Exercising restraint in measuring blood pressure in conscious mice. Hypertension 41:879‐881.
   Hart, C.Y., Burnett, J.C. Jr., and Redfield, M.M. 2001. Effects of avertin versus xylazine‐ketamine anesthesia on cardiac function in normal mice. Am. J. Physiol. Heart Circ. Physiol. 281:H1938‐ H1945.
   Janssen, B.J., De Celle, T., Debets, J.J., Brouns, A.E., Callahan, M.F., and Smith, T.L. 2004. Effects of anesthetics on systemic hemodynamics in mice. Am. J. Physiol Heart Circ Physiol 287:H1618‐H1624.
   Kiatchoosakun, S., Kirkpatrick, D., and Hoit, B.D. 2001. Effects of tribromoethanol anesthesia on echocardiographic assessment of left ventricular function in mice. Comp. Med. 51:26‐29.
   Kramer, K., Voss, H.P., Grimbergen, J.A., Mills, P.A., Huetteman, D., Zwiers, L., and Brockway, B. 2000. Telemetric monitoring of blood pressure in freely moving mice: A preliminary study. Lab. Anim. 34:272‐280.
   Krege, J.H., Hodgin, J.B., Hagaman, J.R., and Smithies, O. 1995. A noninvasive computerized tail‐cuff system for measuring blood pressure in mice. Hypertension 25:1111‐1115.
   Kurtz, T.W., Griffin, K.A., Bidani, A.K., Davisson, R.L., and Hall, J.E. 2005. Recommendations for blood pressure measurement in humans and experimental animals. Part 2: Blood pressure measurements in experimental animals. Hypertension 45:299‐310.
   Lin, M., Harden, S.W., Li, L., Wurster, R.D., and Chen, Z. 2010. Impairment of baroreflex control of heart rate in conscious transgenic mice of type 1 diabetes (OVE26). Auton. Neurosci. 152:67‐74.
   Lorenz, J.N. 2002. A practical guide to evaluating cardiovascular, renal, and pulmonary function in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282:R1565‐R1582.
   Lorenz, J.N. and Robbins, J. 1997. Measurement of intraventricular pressure and cardiac performance in the intact closed‐chest anesthetized mouse. Am. J. Physiol. 272:H1137‐H1146.
   Ma, X., Abboud, F.M., and Chapleau, M.W. 2002. Analysis of afferent, central, and efferent components of the baroreceptor reflex in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283:R1033‐R1040.
   Mattson, D.L. 1998. Long‐term measurement of arterial blood pressure in conscious mice. Am. J. Physiol. 274:R564‐R570.
   Odashima, M., Usui, S., Takagi, H., Hong, C., Liu, J., Yokota, M., and Sadoshima, J. 2007. Inhibition of endogenous Mst1 prevents apoptosis and cardiac dysfunction without affecting cardiac hypertrophy after myocardial infarction. Circ. Res. 100:1344‐1352.
   Pena, J.R. and Wolska, B.M. 2005. Differential effects of isoflurane and ketamine/inactin anesthesia on cAMP and cardiac function in FVB/N mice during basal state and beta‐adrenergic stimulation. Basic Res. Cardiol. 100:147‐153.
   Roth, D.M., Swaney, J.S., Dalton, N.D., Gilpin, E.A., and Ross, J. Jr. 2002. Impact of anesthesia on cardiac function during echocardiography in mice. Am. J. Physiol. Heart Circ. Physiol. 282:H2134‐H2140.
   Szczesny, G., Veihelmann, A., Massberg, S., Nolte, D., and Messmer, K. 2004. Long‐term anaesthesia using inhalatory isoflurane in different strains of mice‐the haemodynamic effects. Lab. Anim. 38:64‐69.
   Uechi, M., Asai, K., Osaka, M., Smith, A., Sato, N., Wagner, T.E., Ishikawa, Y., Hayakawa, H., Vatner, D.E., Shannon, R.P., Homcy, C.J., and Vatner, S.F. 1998. Depressed heart rate variability and arterial baroreflex in conscious transgenic mice with overexpression of cardiac Gsα. Circ. Res. 82:416‐423.
   van Nimwegen, C., van Eijnsbergen, B., Boter, J., and Mullink, J.W. 1973. A simple device for indirect measurement of blood pressure in mice. Lab. Anim. 7:73‐84.
   Vatner, D.E., Yan, G.P., Geng, Y.J., Asai, K., Yun, J.S., Wagner, T.E., Ishikawa, Y., Bishop, S.P., Homcy, C.J., and Vatner, S.F. 2000. Determinants of the cardiomyopathic phenotype in chimeric mice overexpressing cardiac Gsα. Circ. Res. 86:802‐806.
   Vatner, S.F. and Braunwald, E. 1975. Cardiovascular control mechanisms in the conscious state. N. Engl. J. Med. 293:970‐976.
   Vatner, SF., Takagi, G., Asai, K., and Shannon, R.P. 2002. Cardiovascular physiology in mice: Conscious measurements and effects of anesthesia. In Cardiovascular Physiology in the Genetically Engineered Mouse (B.D. Hoit, ed.) pp. 257‐275. Kluwer Academic Publishers, New York.
   Whitesall, S.E., Hoff, J.B., Vollmer, A.P., and D'Alecy, L.G. 2004. Comparison of simultaneous measurement of mouse systolic arterial blood pressure by radiotelemetry and tail‐cuff methods. Am. J. Physiol. Heart Circ. Physiol. 286:H2408‐H2415.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library