Overview of the Measurement of Lipids and Lipoproteins in Mice

Anne Tailleux1, Bart Staels1

1 Institut Pasteur de Lille, Lille, France
Publication Name:  Current Protocols in Mouse Biology
Unit Number:   
DOI:  10.1002/9780470942390.mo110001
Online Posting Date:  June, 2011
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Experimental mouse models are widely used for preclinical research on dyslipidemia, atherosclerosis, and cardiometabolic diseases. This unit reports the most commonly used biochemical analysis methods available to determine the lipid and lipoprotein phenotype in the mouse. The discussed methods include: the qualitative and quantitative analysis of lipids, apolipoproteins, and lipoproteins (with a specific emphasis on species‐specificities of mice and humans), and the activity assay of major enzymes involved in lipoprotein remodeling (LCAT, PLTP, and LPL). The unit also discusses the most frequently used functional tests to analyze lipid/lipoprotein metabolism in vivo, including triglyceride metabolism, reverse cholesterol transport, intestinal lipid absorption, and secretion. Curr. Protoc. Mouse Biol. 1:265‐277 © 2011 by John Wiley & Sons, Inc.

Keywords: lipids; lipoproteins; apolipoproteins; mouse

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Quantitative and Qualitative Analysis of Circulating Lipids and Lipoproteins
  • Measurement of Enzyme Activities
  • Functional Tests In Vivo
  • Conclusion: Technologies on the Horizon
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Altomonte, J., Cong, L., Harbaran, S., Richter, A., Xu, J., Meseck, M., and Dong, H.H. 2004. Foxo1 mediates insulin action on apoC‐III and triglyceride metabolism. J. Clin. Invest. 114:1493‐1503.
   Bouly, M., Masson, D., Gross, B., Jiang, X.C., Fievet, C., Castro, G., Tall, A.R., Fruchart, J.C., Staels, B., Lagrost, L., and Luc, G. 2001. Induction of the phospholipid transfer protein gene accounts for the high density lipoprotein enlargement in mice treated with fenofibrate. J. Biol. Chem. 276:25841‐25847.
   Brunham, L.R., Kruit, J.K., Iqbal, J., Fievet, C., Timmins, J.M., Pape, T.D., Coburn, B.A., Bissada, N., Staels, B., Groen, A.K., Hussain, M.M., Parks, J.S., Kuipers, F., and Hayden, M.R. 2006. Intestinal ABCA1 directly contributes to HDL biogenesis in vivo. J. Clin. Invest. 116:1052‐1062.
   Brunham, L.R., Singaraja, R.R., Duong, M., Timmins, J.M., Fievet, C., Bissada, N., Kang, M.H., Samra, A., Fruchart, J.C., McManus, B., Staels, B., Parks, J.S., and Hayden, M.R. 2009. Tissue‐specific roles of ABCA1 influence susceptibility to atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 29:548‐554.
   Calpe‐Berdiel, L., Rotllan, N., Palomer, X., Ribas, V., Blanco‐Vaca, F., and Escolà‐Gil, J.C. 2005. Direct evidence in vivo of impaired macrophage‐specific reverse cholesterol transport in ATP‐binding cassette transporter A1‐deficient mice. Biochim. Biophys. Acta 1738:6‐9.
   Calpe‐Berdiel, L., Rotllan, N., Fiévet, C., Roig, R., Blanco‐Vaca, F., and Escolà‐Gil, J.C. 2008. Liver X receptor‐mediated activation of reverse cholesterol transport from macrophages to feces in vivo requires ABCG5/G8. J. Lipid Res. 49:1904‐1911.
   Carter, C.P., Howles, P.N., and Hui, D.Y. 1997. Genetic variation in cholesterol absorption efficiency among inbred strains of mice. J. Nutr. 127:1344‐1348.
   Castro, G.R. and Fielding, C.J. 1988. Early incorporation of cell‐derived cholesterol into pre‐beta‐migrating high‐density lipoprotein. Biochemistry 27:25‐29.
   Castro, G.R., Nihoul, L.P., Dengremont, C., de Geitère, C., Delfly, B., Tailleux, A., Fievet, C., Duverger, N., Denèfle, P., Fruchart, J.C., and Rubin, E.M. 1997. Cholesterol efflux, lecithin‐cholesterol acyltransferase activity, and pre‐beta particle formation by serum from human apolipoprotein A‐I and apolipoprotein A‐I/apolipoprotein A‐II transgenic mice consistent with the latter being less effective for reverse cholesterol transport. Biochemistry 36:2243‐2249.
   Cavigiolio, G., Shao, B., Geier, E.G., Ren, G., Heinecke, J.W., and Oda, M.N. 2008. The interplay between size, morphology, stability, and functionality of high‐density lipoprotein subclasses. Biochemistry 47:4770‐4779.
   Chen, C.H. and Albers, J.J. 1982. Characterization of proteoliposomes containing apoprotein A‐I: A new substrate for the measurement of lecithin: Cholesterol acyltransferase activity. J. Lipid Res. 23:680‐691.
   Coutinho, J.M., Singaraja, R.R., Kang, M., Arenillas, D.J., Bertram, L.N., Bissada, N., Staels, B., Fruchart, J.C., Fievet, C., Joseph‐George, A.M., Wasserman, W.W., and Hayden, M.R. 2005. Complete functional rescue of the ABCA1‐/‐ mouse by human BAC transgenesis. J. Lipid Res. 46:1113‐1123.
   Damen, J., Regts, J., and Scherphof, G. 1982. Transfer of [14C]phosphatidylcholine between liposomes and human plasma high density lipoprotein. Partial purification of a transfer‐stimulating plasma factor using a rapid transfer assay. Biochim. Biophys. Acta 712:444‐452.
   Davidov, E., Clish, C.B., Oresic, M., Meys, M., Stochaj, W., Snell, P., Lavine, G., Londo, T.R., Adourian, A., Zhang, X., Johnston, M., Morel, N., Marple, E.W., Plasterer, T.N., Neumann, E., Verheij, E., Vogels, J.T., Havekes, L.M., van der Greef, J., and Naylor, S. 2004. Methods for the differential integrative omic analysis of plasma from a transgenic disease animal model. OMICS 8:267‐288.
   Dursun, E., Monari, E., Cuoghi, A., Bergamini, S., Ozben, B., Suleymanlar, G., Tomasi, A., and Ozben, T. 2010a. Proteomic profiling during atherosclerosis progression using SELDI‐TOF‐MS: Effect of darbepoetin treatment. Acta Histochem. 112:432‐443.
   Dursun, E., Ozben, B., Monari, E., Cuoghi, A., Tomasi, A., and Ozben, T. 2010b. Proteomic profiling in apolipoprotein E‐deficient mice during atherosclerosis progression. Acta Histochem. 112:178‐188.
   Ekroos, K., Jänis, M., Tarasov, K., Hurme, R., and Laaksonen, R. 2010. Lipidomics: A tool for studies of atherosclerosis. Curr. Atheroscler. Rep. 12:273‐281.
   Escolà‐Gil, JC., Julve, J., Marzal‐Casacuberta, A., Ordóñez‐Llanos, J., González‐Sastre, F., and Blanco‐Vaca, F. 2001. ApoA‐II expression in CETP transgenic mice increases VLDL production and impairs VLDL clearance. J. Lipid Res. 42:241‐248.
   Fievet, C., Fruchart, J., and Staels, B. 2007. Genetically‐engineered animals as research models for atherosclerosis: Their use for the characterization of PPAR agonists in the treatment of cardiometabolic disorders. Front. Biosci. 12:4132‐4156.
   Goldberg, I.J., Hu, Y., Noh, H., Wei, J., Huggins, L.A., Rackmill, M.G., Hamai, H., Reid, B.N., Blaner, W.S., and Huang, L.S. 2008. Decreased lipoprotein clearance is responsible for increased cholesterol in LDL receptor knockout mice with streptozotocin‐induced diabetes. Diabetes 57:1674‐1682.
   Huang, Y., von Eckardstein, A., and Assmann, G. 1993. Cell‐derived unesterified cholesterol cycles between different HDLs and LDL for its effective esterification in plasma. Arterioscler. Thromb. 13:445‐458.
   Jakulj, L., Vissers, M.N., van Roomen, C.P., van der Veen, J.N., Vrins, C.L., Kunne, C., Stellaard, F., Kastelein, J.J., and Groen, A.K. 2010. Ezetimibe stimulates faecal neutral sterol excretion depending on abcg8 function in mice. FEBS Lett. 584:3625‐3628.
   Jiang, X., Tall, A.R., Qin, S., Lin, M., Schneider, M., Lalanne, F., Deckert, V., Desrumaux, C., Athias, A., Witztum, J.L., and Lagrost, L. 2002. Phospholipid transfer protein deficiency protects circulating lipoproteins from oxidation due to the enhanced accumulation of vitamin E. J. Biol. Chem. 277:31850‐31856.
   Julve, J., Escolà‐Gil, J.C., Marzal‐Casacuberta, A., Ordóñez‐Llanos, J., González‐Sastre, F., and Blanco‐Vaca, F. 2000. Increased production of very‐low‐density lipoproteins in transgenic mice overexpressing human apolipoprotein A‐II and fed with a high‐fat diet. Biochim. Biophys. Acta 1488:233‐244.
   Julve, J., Escolà‐Gil, J.C., Rotllan, N., Fiévet C., Vallez, E., de la Torre, C., Ribas, V., Sloan, J.H., and Blanco‐Vaca, F. 2010. Human apolipoprotein A‐II determines plasma triglycerides by regulating lipoprotein lipase activity and high‐density lipoprotein proteome. Arterioscler. Thromb. Vasc. Biol. 30:232‐238.
   Kaser, S., Sandhofer, A., Hölzl, B., Gander, R., Ebenbichler, C.F., Paulweber, B., and Patsch, J.R. 2003. Phospholipid and cholesteryl ester transfer are increased in lipoprotein lipase deficiency. J. Intern. Med. 253:208‐216.
   Kontush, A. and Chapman, M.J. 2006. Antiatherogenic small, dense HDL–guardian angel of the arterial wall? Nat. Clin. Pract. Cardiovasc. Med. 3:144‐153.
   Kontush, A. and Chapman, MJ. 2010. Lipidomics as a tool for the study of lipoprotein metabolism. Curr. Atheroscler. Rep. 12:194‐201.
   Lalloyer, F., Fiévet, C., Lestavel, S., Torpier, G., van der Veen, J., Touche, V., Bultel, S., Yous, S., Kuipers, F., Paumelle, R., Fruchart, J.C., Staels, B., and Tailleux, A. 2006. The RXR agonist bexarotene improves cholesterol homeostasis and inhibits atherosclerosis progression in a mouse model of mixed dyslipidemia. Arterioscler. Thromb. Vasc. Biol. 26:2731‐2737.
   MacDonald, M.L.E., Singaraja, R.R., Bissada, N., Ruddle, P., Watts, R., Karasinska, J.M., Gibson, W.T., Fievet, C., Vance, J.E., Staels, B., and Hayden, M.R. 2008. Absence of stearoyl‐CoA desaturase‐1 ameliorates features of the metabolic syndrome in LDLR‐deficient mice. J. Lipid Res. 49:217‐229.
   MacDonald, M.L.E., van Eck, M., Hildebrand, R.B., Wong, B.W., Bissada, N., Ruddle, P., Kontush, A., Hussein, H., Pouladi, M.A., Chapman, M.J., Fievet, C., van Berkel, T.J., Staels, B., McManus, B.M., and Hayden, M.R. 2009. Despite antiatherogenic metabolic characteristics, SCD1‐deficient mice have increased inflammation and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 29:341‐347.
   Masson, D., Jiang, X., Lagrost, L., and Tall, A.R. 2009. The role of plasma lipid transfer proteins in lipoprotein metabolism and atherogenesis. J. Lipid Res. 50:S201‐S206.
   Moir, A.M., Park, B.S., and Zammit, V.A. 1995. Quantification in vivo of the effects of different types of dietary fat on the loci of control involved in hepatic triacylglycerol secretion. Biochem. J. 308:537‐542.
   Naik, S.U., Wang, X., Da Silva, J.S., Jaye, M., Macphee, C.H., Reilly, M.P., Billheimer, J.T., Rothblat, G.H., and Rader, D.J. 2006. Pharmacological activation of liver X receptors promotes reverse cholesterol transport in vivo. Circulation 113:90‐97.
   Noga, A.A. and Vance, D.E. 2003. A gender‐specific role for phosphatidylethanolamine N‐methyltransferase‐derived phosphatidylcholine in the regulation of plasma high density and very low density lipoproteins in mice. J. Biol. Chem. 278:21851‐21859.
   Ozben, B., Dursun, E., Monari, E., Cuoghi, A., Bergamini, S., Tomasi, A., and Ozben, T. 2009. Proteomic profiling during atherosclerosis progression: Effect of nebivolol treatment. Mol. Cell. Biochem. 331:9‐17.
   Perdomo, G., Kim, D.H., Zhang, T., Qu, S., Thomas, E.A., Toledo, F.G., Slusher, S., Fan, Y., Kelley, D.E., and Dong, H.H. 2010. A role of apolipoprotein D in triglyceride metabolism. J. Lipid Res. 51:1298‐1311.
   Peterson, J., Olivecrona, T., and Bengtsson‐Olivecrona, G. 1985. Distribution of lipoprotein lipase and hepatic lipase between plasma and tissues: Effect of hypertriglyceridemia. Biochim. Biophys. Acta 837:262‐270.
   Qu, S., Perdomo, G., Su, D., D'Souza, F.M., Shachter, N.S., and Dong, H.H. 2007. Effects of apoA‐V on HDL and VLDL metabolism in APOC3 transgenic mice. J. Lipid Res. 48:1476‐1487.
   Quintão, E.C.R. and Cazita, P.M. 2010. Lipid transfer proteins: Past, present and perspectives. Atherosclerosis 209:1‐9.
   Ribas, V., Palomer, X., Roglans, N., Rotllan, N., Fievet, C., Tailleux, A., Julve, J., Laguna, J.C., Blanco‐Vaca, F., and Escolà‐Gil, J.C. 2005. Paradoxical exacerbation of combined hyperlipidemia in human apolipoprotein A‐II transgenic mice treated with fenofibrate. Biochim. Biophys. Acta 1737:130‐137.
   Rotllan, N., Ribas, V., Calpe‐Berdiel, L., Martín‐Campos, J.M., Blanco‐Vaca, F., and Escolà‐Gil, J.C. 2005. Overexpression of human apolipoprotein A‐II in transgenic mice does not impair macrophage‐specific reverse cholesterol transport in vivo. Arterioscler. Thromb. Vasc. Biol. 25:e128‐e132.
   Salisbury, B.G., Davis, H.R., Burrier, R.E., Burnett, D.A., Bowkow, G., Caplen, M.A., Clemmons, A.L., Compton, D.S., Hoos, L.M., McGregor, D.G., Schnitzer‐Polokoff, R., Smith, A.A., Weig, B.C., Zilli, D.L., Clader, J.W., and Sybertz, E.J. 1995. Hypocholesterolemic activity of a novel inhibitor of cholesterol absorption, SCH 48461. Atherosclerosis 115:45‐63.
   Schwarz, M., Russell, D.W., Dietschy, J.M., and Turley, S.D. 1998. Marked reduction in bile acid synthesis in cholesterol 7alpha‐hydroxylase‐deficient mice does not lead to diminished tissue cholesterol turnover or to hypercholesterolemia. J. Lipid Res. 39:1833‐1843.
   Settasatian, N., Duong, M., Curtiss, L.K., Ehnholm, C., Jauhiainen, M., Huuskonen, J., and Rye, K.A. 2001. The mechanism of the remodeling of high density lipoproteins by phospholipid transfer protein. J. Biol. Chem. 276:26898‐26905.
   Shimizugawa, T., Ono, M., Shimamura, M., Yoshida, K., Ando, Y., Koishi, R., Ueda, K., Inaba, T., Minekura, H., Kohama, T., and Furukawa, H. 2002. ANGPTL3 decreases very low density lipoprotein triglyceride clearance by inhibition of lipoprotein lipase. J. Biol. Chem. 277:33742‐33748.
   Singaraja, R.R., Bocher, V., James, E.R., Clee, S.M., Zhang, L.H., Leavitt, B.R., Tan, B., Brooks‐Wilson, A., Kwok, A., Bissada, N., Yang, Y.Z., Liu, G., Tafuri, S.R., Fievet, C., Wellington, C.L., Staels, B., and Hayden, M.R. 2001. Human ABCA1 BAC transgenic mice show increased high‐density lipoprotein cholesterol and ApoAI‐dependent efflux stimulated by an internal promoter containing liver X receptor response elements in intron 1. J. Biol. Chem. 276:33969‐33979.
   Singaraja, R.R., Fievet, C., Castro, G., James, E.R., Hennuyer, N., Clee, S.M., Bissada, N., Choy, J.C., Fruchart, J.C., McManus, B.M., Staels, B., and Hayden, M.R. 2002. Increased ABCA1 activity protects against atherosclerosis. J. Clin. Invest. 110:35‐42.
   Singaraja, R.R., Van Eck, M., Bissada, N., Zimetti, F., Collins, H.L., Hildebrand, R.B., Hayden, A., Brunham, L.R., Kang, M.H., Fruchart, J.C., Van Berkel, T.J., Parks, J.S., Staels, B., Rothblat, G.H., Fiévet, C., and Hayden, M.R. 2006. Both hepatic and extrahepatic ABCA1 have discrete and essential functions in the maintenance of plasma high‐density lipoprotein cholesterol levels in vivo. Circulation 114:1301‐1309.
   Sokolović, M., Sokolović, A., van Roomen, C.P.A.A., Gruber, A., Ottenhoff, R., Scheij, S., Hakvoort, T.B., Lamers, W.H., and Groen, A.K. 2010. Unexpected effects of fasting on murine lipid homeostasis–transcriptomic and lipid profiling. J. Hepatol. 52:737‐744.
   Tailleux, A., Torpier, G., Mezdour, H., Fruchart, J.C., Staels, B., and Fiévet, C. 2003. Murine models to investigate pharmacological compounds acting as ligands of PPARs in dyslipidemia and atherosclerosis. Trends Pharmacol. Sci. 24:530‐534.
   Tancevski, I., Wehinger, A., Demetz, E., Eller, P., Duwensee, K., Huber, J., Hochegger, K., Schgoer, W., Fievet, C., Stellaard, F., Rudling, M., Patsch, J.R., and Ritsch, A. 2008. Reduced plasma high‐density lipoprotein cholesterol in hyperthyroid mice coincides with decreased hepatic adenosine 5′‐triphosphate‐binding cassette transporter 1 expression. Endocrinology 149:3708‐3712.
   Tancevski, I., Demetz, E., Eller, P., Duwensee, K., Hoefer, J., Heim, C., Stanzl, U., Wehinger, A., Auer, K., Karer, R., Huber, J., Schgoer, W., Van Eck, M., Vanhoutte, J., Fievet, C., Stellaard, F., Rudling, M., Patsch, J.R., and Ritsch, A. 2010. The liver‐selective thyromimetic T‐0681 influences reverse cholesterol transport and atherosclerosis development in mice. PLoS ONE 5:e8722.
   Turley, S.D., Herndon, M.W., and Dietschy, J.M. 1994. Reevaluation and application of the dual‐isotope plasma ratio method for the measurement of intestinal cholesterol absorption in the hamster. J. Lipid Res. 35:328‐339.
   Tzotzas, T., Desrumaux, C., and Lagrost, L. 2009. Plasma phospholipid transfer protein (PLTP): Review of an emerging cardiometabolic risk factor. Obes. Rev. 10:403‐411.
   van der Veen, J.N., Kruit, J.K., Havinga, R., Baller, J.F., Chimini, G., Lestavel, S., Staels, B., Groot, P.H., Groen, A.K., and Kuipers, F. 2005. Reduced cholesterol absorption upon PPARdelta activation coincides with decreased intestinal expression of NPC1L1. J. Lipid Res. 46:526‐534.
   van der Veen, J.N., van Dijk, T.H., Vrins, C.L.J., van Meer, H., Havinga, R., Bijsterveld, K., Tietge, U.J., Groen, A.K., and Kuipers, F. 2009. Activation of the liver X receptor stimulates trans‐intestinal excretion of plasma cholesterol. J. Biol. Chem. 284:19211‐19219.
   van der Velde, A.E., Vrins, C.L.J., van den Oever, K., Seemann, I., Oude Elferink, R.P., van Eck, M., Kuipers, F., and Groen, A.K. 2008. Regulation of direct transintestinal cholesterol excretion in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 295:G203‐G208.
   van der Velde, A.E., Brufau, G., and Groen, A.K. 2010. Transintestinal cholesterol efflux. Curr. Opin. Lipidol. 21:167‐171.
   van Haperen, R., van Tol, A., Vermeulen, P., Jauhiainen, M., van Gentxys, T., van den Berg, P., Ehnholm, S., Grosveld, F., van der Kamp, A., and de Crom, R. 2000. Human plasma phospholipid transfer protein increases the antiatherogenic potential of high density lipoproteins in transgenic mice. Arterioscler. Thromb. Vasc. Biol. 20:1082‐1088.
   Voyiaziakis, E., Ko, C., O'Rourke, S.M., and Huang, L.S. 1999. Genetic control of hepatic apoB‐100 secretion in human apoB transgenic mouse strains. J. Lipid Res. 40:2004‐2012.
   Vrins, C.L.J., van der Velde, A.E., van den Oever, K., Levels, J.H., Huet, S., Oude Elferink, R.P., Kuipers, F., and Groen, A.K. 2009. Peroxisome proliferator‐activated receptor delta activation leads to increased transintestinal cholesterol efflux. J. Lipid Res. 50:2046‐2054.
   Wang, D.Q. and Carey, M.C. 2003. Measurement of intestinal cholesterol absorption by plasma and fecal dual‐isotope ratio, mass balance, and lymph fistula methods in the mouse: an analysis of direct versus indirect methodologies. J. Lipid Res. 44:1042‐1059.
   Wang, M., Franklin, V., and Marcel, Y.L. 2007. In vivo reverse cholesterol transport from macrophages lacking ABCA1 expression is impaired. Arterioscler. Thromb. Vasc. Biol. 27:1837‐1842.
   Zanotti, I., Potì, F., Pedrelli, M., Favari, E., Moleri, E., Franceschini, G., Calabresi, L., and Bernini, F. 2008. The LXR agonist T0901317 promotes the reverse cholesterol transport from macrophages by increasing plasma efflux potential. J. Lipid Res. 49:954‐960.
   Zhang, Y., Zanotti, I., Reilly, M.P., Glick, J.M., Rothblat, G.H., and Rader, D.J. 2003. Overexpression of apolipoprotein A‐I promotes reverse transport of cholesterol from macrophages to feces in vivo. Circulation 108:661‐663.
PDF or HTML at Wiley Online Library