Quantal Analysis of Endplate Potentials in Mouse Flexor Digitorum Brevis Muscle

Richard R. Ribchester1

1 Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, George Square, Edinburgh, Scotland, United Kingdom
Publication Name:  Current Protocols in Mouse Biology
Unit Number:   
DOI:  10.1002/9780470942390.mo110127
Online Posting Date:  December, 2011
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


The isolated flexor digitorum brevis (FDB) muscle from mice is extremely well suited to rapid acquisition of data and analysis of neurotransmitter release and action at neuromuscular junctions, because the muscle and its tibial nerve supply are simple to dissect and its constituent muscle fibers are short (<1 mm) and isopotential along their length. Methods are described here for dissection of FDB, stimulation of the tibial nerve, microelectrode recording from individual muscle fibers, and quantal analysis of endplate potentials (EPPs) and miniature endplate potentials (MEPPs). Curr. Protoc. Mouse Biol. 1:429‐444 © 2011 by John Wiley & Sons, Inc.

Keywords: neuromuscular junction; endplate potential; intracellular recording; electrophysiology; quantal analysis

PDF or HTML at Wiley Online Library

Table of Contents

  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


Basic Protocol 1:

  • Physiological saline solution (see recipe)
  • Mouse (any laboratory strain of any age/gender; e.g., C57B16)
  • µ‐conotoxin GIIIB (Bachem)
  • 4 M potassium acetate
  • Dissection tools (iris scissors, spring scissors, fine forceps)
  • Sylgard‐lined Petri dish (see recipe)
  • Fine minutien pins (Fine Science Tools)
  • Suction electrode (see recipe)
  • Micromanipulators (e.g., Leica or Sutter Instruments)
  • Recording chamber: the author's laboratory uses a Perspex chamber made in‐house, but a Sylgard‐lined Petri dish (see recipe) will suffice
  • 1‐mm glass capillary tubing containing and internal welded glass filament (1.5 mm O.D., 0.84 mm I.D. standard wall borosilicate glass with filament; World Precision Instruments, cat. no. 1B150F‐6)
  • Electrode puller: Among the most popular electrode pullers with electrophysiologists is the Brown‐Fleming puller manufactured by Sutter Instruments
  • Syringe with tip drawn out after warming the plastic in a Bunsen burner flame
  • Microelectrode amplifier (Axoclamp 2B, Axon Instruments)
  • Silver‐silver chloride wire or pellet (0.8 mm diameter × 20 mm Ag/AgCl electrode; World Precision Instruments, cat. no. EP08)
  • Mains interference filter (Digitimer Humbug; optional)
  • Low‐pass (<2 kHz) filters (Neurolog, Digitimer, UK)
  • Pulse train generator (Digitimer D4030 Programmer)
  • Isolated stimulator (Digitimer DS2)
  • Dissecting microscope
  • Light source for dissecting microscope (dark‐field condenser or flexible fiber‐optic light)
  • Recording display device (oscilloscope, or computer running WinWCP)
  • WinWCP software program (Strathclyde Electrophysiology Software; (http://spider.science.strath.ac.uk/sipbs/showPage.php?page=software_ses)
  • Data acquisition unit (CED micro 1401, Cambridge Electronic Design, http://www.ced.co.uk/)
  • Additional reagents and equipment for sacrifice of the mouse (Donovan and Brown, )
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Angaut‐Petit, D., Molgo, J., Connold, A.L., and Faille, L. 1987. The levator auris longus muscle of the mouse: A convenient preparation for studies of short‐ and long‐term presynaptic effects of drugs or toxins. Neurosci. Lett. 82:83‐88.
   Auerbach, A. and Betz, W. 1971. Does curare affect transmitter release? J Physiol. 213:691‐705.
   Bekoff, A. and Betz, W.J. 1977a. Properties of isolated adult rat muscle fibres maintained in tissue culture. J. Physiol. 271:537‐547.
   Bekoff, A. and Betz, W.J. 1977b. Physiological properties of dissociated muscle fibres obtained from innervated and denervated adult rat muscle. J. Physiol. 271:25‐40.
   Bennett, M.R. and Robinson, J. 1990. Probabilistic secretion of quanta from nerve terminals at synaptic sites on muscle cells: Non‐uniformity, autoinhibition and the binomial hypothesis. Proc. R Soc. Lond. B Biol. Sci. 239:329‐358.
   Bergquist, S., Dickman, D.K., and Davis, G.W. 2010. A hierarchy of cell intrinsic and target‐derived homeostatic signaling. Neuron 66:220‐234.
   Betz, W.J. and Bewick, G.S. 1993. Optical monitoring of transmitter release and synaptic vesicle recycling at the frog neuromuscular junction. J. Physiol. 460:287‐309.
   Blioch, Z.L., Glagoleva, I.M., Liberman, E.A., and Nenashev, V.A. 1968. A study of the mechanism of quantal transmitter release at a chemical synapse. J. Physiol. 199:11‐35.
   Braga, M.F., Anderson, A.J., Harvey, A.L., and Rowan, E.G., 1992. Apparent block of K+ currents in mouse motor nerve terminals by tetrodotoxin, mu‐conotoxin and reduced external sodium. Br. J. Pharmacol. 106:91‐94.
   Byrne, J.H. and Roberts, J.L. 2009. From Molecules to Networks, 2nd ed. Elsevier, Amsterdam.
   Christensen, B.N. and Martin, A.R. 1970. Estimates of probability of transmitter release at the mammalian neuromuscular junction. J. Physiol. 210:933‐945.
   Clements, J.D. and Silver, R.A. 2000. Unveiling synaptic plasticity: A new graphical and analytical approach. Trends Neurosci. 23:105‐113.
   Cooper, R.L., Stewart, B.A., Wojtowicz, J.M., Wang, S., and Atwood, H.L. 1995. Quantal measurement and analysis methods compared for crayfish and Drosophila neuromuscular junctions, and rat hippocampus. J. Neurosci. Methods 61:67‐78.
   Curtis, M.J., Quastel, D.M., and Saint, D.A. 1986. Lanthanum as a surrogate for calcium in transmitter release at mouse motor nerve terminals. J. Physiol. 373:243‐260.
   DiFranco, M., Tran, P., Quinonez, M., and Vergara, J.L. 2011. Functional expression of transgenic 1sDHPR channels in adult mammalian skeletal muscle fibres. J. Physiol. 589:1421‐1442.
   Donovan, J. and Brown, P. 2006. Euthanasia. Curr. Protoc. Immunol. 73:1.8.1‐1.8.4.
   Frank, C.A., Kennedy, M.J., Goold, C.P., Marek, K.W., and Davis, G.W. 2006. Mechanisms underlying the rapid induction and sustained expression of synaptic homeostasis. Neuron 52:663‐677.
   Gillespie, J.I. and Ribchester, R.R. 1988. Optical measurements of intracellular pH in intact isolated muscle fibres and muscle growth cones in culture. Q. J. Exp. Physiol. 73:995‐1000.
   Gillingwater, T.H., Thomson, D., Mack, T.G., Soffin, E.M., Mattison, R.J., Coleman, M.P., and Ribchester, R.R. 2002. Age‐dependent synapse withdrawal at axotomised neuromuscular junctions in Wld(s) mutant and Ube4b/Nmnat transgenic mice. J. Physiol. 543:739‐755.
   Harris, J.B. and Ribchester, R.R. 1979a. Pharmacological aspects of neuromuscular transmission in the isolated diaphragm of the dystrophic (Rej 129) mouse. Br. J. Pharmacol. 65:411‐421.
   Harris, J.B. and Ribchester, R.R. 1979b. The relationship between end‐plate size and transmitter release in normal and dystrophic muscles of the mouse. J. Physiol. 296:245‐265.
   Hubbard, J.I., Llinás, R., and Quastel, D.M.J. 1969. Electrophysiological analysis of synaptic transmission. Monogr. Physiol. Soc. no. 19.
   Johnson, E.W. and Wernig, A. 1971. The binomial nature of transmitter release at the crayfish neuromuscular junction. J. Physiol. 218:757‐767.
   Katz, B. 1969. The Release of Neural Transmitter Substances. Liverpool University Press, Liverpool, U.K.
   Katz, B. 1996. Neural transmitter release: From quantal secretion to exocytosis and beyond. The Fenn Lecture. J. Neurocytol. 25:677‐686.
   Liu, Y., Sugiura, Y., and Lin, W. 2011. The role of Synaptobrevin1/VAMP1 in Ca2+‐triggered neurotransmitter release at the mouse neuromuscular junction. J. Physiol. 589:1603‐1618.
   Livet, J., Weissman, T.A., Kang, H., Draft, R.W., Lu, J., Bennis, R.A., Sanes, J.R., and Lichtman, J.W. 2007. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:56‐62.
   Lu, J., Tapia, J.C., White, O.L., and Lichtman, J.W. 2009. The interscutularis muscle connectome. PLoS Biol. 7:e32.
   Lupa, M.T. and Caldwell, J.H. 1991. Effect of agrin on the distribution of acetylcholine receptors and sodium channels on adult skeletal muscle fibers in culture. J. Cell Biol. 115:765‐778.
   Magleby, K.L. and Terrar, D.A. 1975. Factors affecting the time course of decay of end‐plate currents: A possible cooperative action of acetylcholine on receptors at the frog neuromuscular junction. J. Physiol. 244:467‐495.
   Martin, A.R. 1994. Amplification of neuromuscular transmission by postjunctional folds. Proc. Biol. Sci. 258:321‐326.
   Massoulie, J. and Millard, C.B. 2009. Cholinesterases and the basal lamina at vertebrate neuromuscular junctions. Curr. Opin. Pharmacol. 9:316‐325.
   McArdle, J.J., Angaut‐Petit, D., Mallart, A., Bournaud, R., Faille, L., and Brigant, J.L. 1981. Advantages of the triangularis sterni muscle of the mouse for investigations of synaptic phenomena. J. Neurosci. Methods 4:109‐115.
   McLachlan, E.M. and Martin, A.R. 1981. Non‐linear summation of end‐plate potentials in the frog and mouse. J. Physiol. 311:307‐324.
   Nagwaney, S., Harlow, M.L., Jung, J.H., Szule, J.A., Ress, D., Xu, J., Marshall, R.M., and McMahan, U.J. 2009. Macromolecular connections of active zone material to docked synaptic vesicles and presynaptic membrane at neuromuscular junctions of mouse. J. Comp. Neurol. 513:457‐468.
   Nocella, M., Colombini, B., Benelli, G., Cecchi, G., Bagni, M.A., and Bruton, J.D. 2011. Force decline during fatigue is due to both a decrease in the force per individual cross‐bridge and the number of cross‐bridges. J. Physiol. 589:3371‐3381.
   Plomp, J.J. and Molenaar, P.C. 1996. Involvement of protein kinases in the upregulation of acetylcholine release at endplates of alpha‐bungarotoxin‐treated rats. J. Physiol. 493:175‐186.
   Plomp, J.J., van Kempen, G.T., and Molenaar, P.C. 1994. The upregulation of acetylcholine release at endplates of alpha‐bungarotoxin‐treated rats: Its dependency on calcium. J. Physiol. 478:125‐136.
   Plomp, J.J., Van Kempen, G.T., De Baets, M.B., Graus, Y.M., Kuks, J.B., and Molenaar, P.C. 1995. Acetylcholine release in myasthenia gravis: Regulation at single end‐plate level. Ann. Neurol. 37:627‐636.
   Ribchester, R.R. 2009. Mammalian neuromuscular junctions: modern tools to monitor synaptic form and function. Curr. Opin. Pharmacol. 9:297‐305.
   Ribchester, R.R., Tsao, J.W., Barry, J.A., Asgari‐Jirhandeh, N., Perry, V.H., and Brown, M.C. 1995. Persistence of neuromuscular junctions after axotomy in mice with slow Wallerian degeneration (C57BL/WldS). Eur. J. Neurosci. 7:1641‐1650.
   Ribchester, R.R., Thomson, D., Haddow, L.J., and Ushkaryov, Y.A. 1998. Enhancement of spontaneous transmitter release at neonatal mouse neuromuscular junctions by the glial cell line‐derived neurotrophic factor (GDNF). J. Physiol. 512:635‐641.
   Ribchester, R.R., Thomson, D., Wood, N.I., Hinks, T., Gillingwater, T.H., Wishart, T.M., Court, F.A., and Morton, A.J. 2004. Progressive abnormalities in skeletal muscle and neuromuscular junctions of transgenic mice expressing the Huntington's disease mutation. Eur. J. Neurosci. 20:3092‐3114.
   Ruiz, R., Cano, R., Casanas, J.J., Gaffield, M.A., Betz, W.J., and Tabares, L. 2011. Active zones and the readily releasable pool of synaptic vesicles at the neuromuscular junction of the mouse. J. Neurosci. 31:2000‐2008.
   Silver, R.A. 2003. Estimation of nonuniform quantal parameters with multiple‐probability fluctuation analysis: Theory, application and limitations. J. Neurosci. Methods. 130:127‐141.
   Slater, C.R. 2008. Reliability of neuromuscular transmission and how it is maintained. Handb. Clin. Neurol. 91:27‐101.
   Slater, C.R., Lyons, P.R., Walls, T.J., Fawcett, P.R., and Young, C. 1992. Structure and function of neuromuscular junctions in the vastus lateralis of man: A motor point biopsy study of two groups of patients. Brain 115:451‐478.
   Slater, C.R., Fawcett, P.R., Walls, T.J., Lyons, P.R., Bailey, S.J., Beeson, D., Young, C., and Gardner‐Medwin, D. 2006. Pre‐ and post‐synaptic abnormalities associated with impaired neuromuscular transmission in a group of patients with ‘limb‐girdle myasthenia’. Brain 129:2061‐2076.
   Thyagarajan, B., Potian, J.G., Garcia, C.C., Hognason, K., Capkova, K., Moe, S.T., Jacobson, A.R., Janda, K.D., and McArdle, J.J. 2010. Effects of hydroxamate metalloendoprotease inhibitors on botulinum neurotoxin A poisoned mouse neuromuscular junctions. Neuropharmacology 58:1189‐1198.
   Urbano, F.J., Rosato‐Siri, M.D., and Uchitel, O.D. 2002. Calcium channels involved in neurotransmitter release at adult, neonatal and P/Q‐type deficient neuromuscular junctions (Review). Mol. Membr. Biol. 19:293‐300.
   Wilkinson, R.S., Lunin, S.D., and Stevermer, J.J. 1992. Regulation of single quantal efficacy at the snake neuromuscular junction. J. Physiol. 448:413‐436.
   Wong, F., Fan, L., Wells, S., Hartley, R., Mackenzie, F.E., Oyebode, O., Brown, R., Thomson, D., Coleman, M.P., Blanco, G., and Ribchester, R.R. 2009. Axonal and neuromuscular synaptic phenotypes in Wld(S), SOD1(G93A) and ostes mutant mice identified by fiber‐optic confocal microendoscopy. Mol. Cell Neurosci. 42:296‐307.
   Wood, S.J. and Slater, C.R. 1997. The contribution of postsynaptic folds to the safety factor for neuromuscular transmission in rat fast‐ and slow‐twitch muscles. J. Physiol. 500:165‐176.
   Yeung, E.W., Balnave, C.D., Ballard, H.J., Bourreau, J.P., and Allen, D.G. 2002. Development of T‐tubular vacuoles in eccentrically damaged mouse muscle fibres. J. Physiol. 540:581‐592.
   Zitman, F.M., Todorov, B., Jacobs, B.C., Verschuuren, J.J., Furukawa, K., Furukawa, K., Willison, H.J., and Plomp, J.J. 2008. Neuromuscular synaptic function in mice lacking major subsets of gangliosides. Neuroscience 156:885‐897.
PDF or HTML at Wiley Online Library