Exploration of the Visual System: Part 2: In Vivo Analysis Methods: Virtual‐Reality Optomotor System, Fundus Examination, and Fluorescent Angiography

Fabienne Marcelli1, Pascal Escher2, Daniel F. Schorderet1

1 EPFL (Ecole Polytechnique Fédérale), Lausanne, Switzerland, 2 Department of Ophthalmology, University of Lausanne, Lausanne, Switzerland
Publication Name:  Current Protocols in Mouse Biology
Unit Number:   
DOI:  10.1002/9780470942390.mo110177
Online Posting Date:  September, 2012
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


The mouse has emerged as an animal model for many diseases. At IRO, we have used this animal to understand the development of many eye diseases and treatment of some of them. Precise evaluation of vision is a prerequisite for both these approaches. In this unit we describe three ways to measure vision: testing the optokinetic response, and evaluating the fundus by direct observation and by fluorescent angiography. Curr. Protoc. Mouse Biol. 2:207‐218 © 2012 by John Wiley & Sons, Inc.

Keywords: ophthalmology; optokinetic response; spatial frequency; contrast sensitivity; fundus; fluorescent angiography

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Strategic Planning
  • Basic Protocol 1: Virtual‐Reality Optomotor System (VOS)
  • Basic Protocol 2: Anesthesia and Eye Care to Perform Fundus Photography and Fluorescein Angiography
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


Basic Protocol 1: Virtual‐Reality Optomotor System (VOS)

  • Mice with desired genotype and age
  • IACUC‐approved food and water
  • Soap‐water or similar for instrument cleaning
  • IACUC‐approved animal housing facility
  • IACUC‐approved animal cages and bedding
  • Virtual optomotor system (VOS)
  • OptoMotry version 1.7.7 (CerebralMechanics)

Basic Protocol 2: Anesthesia and Eye Care to Perform Fundus Photography and Fluorescein Angiography

  • Anesthetic for the “ON” phase (see recipe)
  • Anesthetic for the “OFF” phase (see recipe)
  • Mice at the specific age needed for the study
  • Isoflurane (Halocarbon Products Corporation), optional
  • Sterile irrigating solution (balanced salt solution, BSS; Alcon)
  • 0.5% tropicamide (SDU Faure, Novartis)
  • 100 mg/ml Phenylephrine hydrochloride (10% Neosynephrin‐POS, Ursapharm)
  • 0.3% hypromellose and carbomer 980 gel (GenTeal Gel, Novartis)
  • 0.3% methyl‐hydroxy‐propyl‐cellulose and dextran solution (Tears Naturale, Alcon)
  • 25% sodium fluorescein (HUB Pharmaceuticals)
  • Balance (e.g. small kitchen scale)
  • 23‐G Sterican hypodermic needles (0.6 × 30 mm; Braun)
  • 1‐ml syringes (Braun)
  • Inhalation chamber (Combi‐vet, Rothacher & Partner Electronics), optional
  • Retinal imaging microscope for small animals (Micron III, Phenix Research Laboratories)
  • Heating pad
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Cowey, A., and Franzini, C. 1979. The retinal origin of uncrossed optic nerve fibres in rats and their role in visual discrimination. Exp. Brain. Res. 35:443‐455.
   Douglas, R.M., Alam, N.M., Silver, B.D., McGill, T.J., Tschetter, W.W., and Prusky, G.T. 2005. Independent visual thresholds measurements in the two eyes of freely moving rats and mice using a virtual‐reality optokinetic system. Vis. Neurosci. 22:677‐684.
   Hawes, N.L., Smith, R.S., Chang, B., Davisson, M., Heckenlively, J.R., and John, S.W.M. 1999. Mouse fundus photography and angiography: A catalogue of normal and mutant phenotypes. Mol. Vis. 5:22.
   Mattapallil, M.J., Wawrousek, E.F., Chan, C.C., Zhao, H., Roychoudhury, J., Ferguson, T.A., and Caspi, R.R. 2012. The Rd8 mutation of the Crb1 gene is present in vendor lines of C57BL/6N mice and embryonic stem cells and confounds ocular induced mutant phenotypes. Invest. Ophthalmol. Vis. Sci. 53:2921‐2927.
   McGill, T.J., Lund, R.D., Douglas, R.M., Wang, S., Lu, B., and Prusky, G.T. 2004. Preservation of vision following cell‐based therapies in a model of retinal degenerative disease. Vision Res. 44:2559‐2566.
   McGill, T.J., Lund, R.D., Douglas, R.M., Wang, S., Lu, B., Silver, B.D., Secretan, M.R., Arthur, J.N., and Prusky, G.T. 2007a. Syngenic Schwann cell transplantation preserves vision in RCS rat without immunosuppression. Invest. Ophthalmol. Vis. Sci. 48:1906‐1912.
   McGill, T.J., Prusky, G.T., Douglas, R.M., Yasumura, D., Matthes M.T., Nune, G., Donohue‐Rolfe, K., Yang, H., Niculescu, D., Hauswirth, W.W., Girman, S.V., Lund, R.D., Duncan, J.L., and LaVail, M.M. 2007b. Intraocular CNTF reduces vision in normal rats in a dose‐dependent manner. Invest. Ophthalmol. Vis. Sci. 48:5756‐5766.
   Morris, R.G., Garrud, P., Rawlins, J.N., and O'Keefe, J. 1982. Place navigation impaired in rats with hippocampal lesions. Nature 297:681‐683.
   Prusky, G.T. and Douglas, R.M. 2008. Measuring vision in the awake behaving mouse. In Eye, Retina, and Visual System of the Mouse (L.M. Chalupa and R.W. Williams, eds.) pp. 107‐117. The MIT Press, Cambridge, Mass.
   Prusky, G.T., West, P., and Douglas, R.M. 2000. Behavioral assessment of visual acuity in mice and rats. Vision Res. 40:2201‐2209.
   Prusky, G.T., Alam N.M., Beekman, S., and Douglas, R.M. 2004. Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Invest. Ophthalmol. Vis. Sci. 45:4611‐4616.
   Prusky, G.T., Alam, N.M., and Douglas, R.M. 2006. Enhancement of vision by monocular deprivation in adult mice. J. Neurosci. 26:11554‐11561.
   Prusky, G.T., Silver, B.D., Tschetter, W.W., Alam, N.M., and Douglas, R.M. 2008. Experience‐dependent plasticity from eye opening enables lasting, visual cortex‐dependent enhancement of motion vision. J. Neurosci. 28:9817‐9827.
   Tschetter, W.W., Douglas, R.M., and Prusky, G.T. 2011. Experience‐induced interocular plasticity of vision in infancy. Front. Syst. Neurosci. 5:44.
PDF or HTML at Wiley Online Library