Discovery Genetics: The History and Future of Spontaneous Mutation Research

Muriel T. Davisson1, David E. Bergstrom1, Laura G. Reinholdt1, Leah Rae Donahue1

1 The Jackson Laboratory, Bar Harbor, Maine
Publication Name:  Current Protocols in Mouse Biology
Unit Number:   
DOI:  10.1002/9780470942390.mo110200
Online Posting Date:  June, 2012
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Historically, spontaneous mutations in mice have served as valuable models of heritable human diseases, contributing substantially to our understanding of both disease mechanisms and basic biological pathways. While advances in molecular technologies have improved our ability to create mouse models of human disease through targeted mutagenesis and transgenesis, spontaneous mutations continue to provide valuable research tools for discovery of novel genes and functions. In addition, the genetic defects caused by spontaneous mutations are molecularly similar to mutations in the human genome and, therefore, often produce phenotypes that more closely resemble those characteristic of human disease than do genetically engineered mutations. Due to the rarity with which spontaneous mutations arise and the animal‐intensive nature of their genetic analysis, large‐scale spontaneous mutation analysis has traditionally been limited to large mammalian genetics institutes. More recently, ENU mutagenesis and new screening methods have increased the rate of mutant strain discovery, and high‐throughput DNA sequencing has enabled rapid identification of the underlying genes and their causative mutations. Here we discuss the continued value of spontaneous mutations for biomedical research. Curr. Protoc. Mouse Biol. 2:103‐118 © 2012 by John Wiley & Sons, Inc.

Keywords: spontaneous mutations; mouse models; forward genetics; biomedical research

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Advantages of Spontaneous Mutation Analysis
  • Challenges of Spontaneous Mutation Analysis
  • History of Spontaneous Mutation Discovery and Development
  • Protocols for Genetic Analysis: Then and Now
  • Summary and Conclusions
  • Acknowledgments
  • Literature Cited
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Anderson, M.G., Hawes, N.L., Trantow, C.M., Chang, B., and John, S.W. 2008. Iris phenotypes and pigment dispersion caused by genes influencing pigmentation. Pigment Cell Melanoma Res. 21:565‐578.
   Arnold, C.N., Xia, Y., Lin, P., Ross, C., Schwander, M., Smart, N.G., Muller, U., and Beutler, B. 2011. Rapid identification of a disease allele in mouse through whole genome sequencing and bulk segregation analysis. Genetics 187:633‐641.
   Bergstrom, D.E., Bergstrom, R.A., Munroe, R.J., Schimenti, J.C., and Gagnon, L.H. 2004. The Nox3 and Noxo1 genes, encoding presumptive members of an NADPH oxidase complex, are required for normal vestibular function and development. In 18th International Mammalian Genome Conference, Seattle, WA, 17‐22 Oct 2004.
   Blake, J.A., Bult, C.J., Kadin, J.A., Richardson, J.E., and Eppig, J.T. 2011. The Mouse Genome Database (MGD): Premier model organism resource for mammalian genomics and genetics. Nucleic Acids Res. 39:D842‐D848.
   Boles, M.K., Wilkinson, B.M., Wilming, L.G., Liu, B., Probst, F.J., Harrow, J., Grafham, D., Hentges, K.E., Woodward, L.P., Maxwell, A., Mitchell, K., Risley, M.D., Johnson, R., Hirschi, K., Lupski, J.R., Funato, Y., Miki, H., Marin‐Garcia, P., Matthews, L., Coffey, A.J., Parker, A., Hubbard, T.J., Rogers, J., Bradley, A., Adams, D.J., and Justice, M.J. 2009. Discovery of candidate disease genes in ENU‐induced mouse mutants by large‐scale sequencing, including a splice‐site mutation in nucleoredoxin. PLoS Genet. 5:e100759.
   Bruneau, S., Johnson, K.R., Yamamoto, M., Kuroiwa, A., and Duboule, D. 2001. The mouse Hoxd13(spdh) mutation, a polyalanine expansion similar to human type II synpolydactyly (SPD), disrupts the function but not the expression of other Hoxd genes. Dev. Biol. 237:345‐353.
   Chang, B., Khanna, H., Hawes, N., Jimeno, D., He, S., Lillo, C., Parapuram, S.K., Cheng, H., Scott, A., Hurd, R.E., Sayer, J.A., Otto, E.A., Attanasio, M., O'Toole, J.F., Jin, G., Shou, C., Hildebrandt, F., Williams, D.S., Heckenlively, J.R., and Swaroop, A. 2006. In‐frame deletion in a novel centrosomal/ciliary protein CEP290/NPHP6 perturbs its interaction with RPGR and results in early‐onset retinal degeneration in the rd16 mouse. Hum. Mol. Genet. 15:1847‐1857.
   Chase, T.H., Lyons, B.L., Bronson, R.T., Foreman, O., Donahue, L.R., Burzenski, L.M., Gott, B., Lane, P., Harris, B., Ceglarek, U., Thiery, J., Wittenburg, H., Thon, J.N., Italiano, J.E. Jr., Johnson, K.R., and Shultz, L.D. 2010. The mouse mutation “thrombocytopenia and cardiomyopathy” (trac) disrupts Abcg5: A spontaneous single gene model for human hereditary phytosterolemia/sitosterolemia. Blood 115:1267‐1276.
   Ciciotte, S.L., Gwynn, B., Moriyama, K., Huizing, M., Gahl, W.A., Bonifacino, J.S., and Peters, L.L. 2003. Cappuccino, a mouse model of Hermansky‐Pudlak syndrome, encodes a novel protein that is part of the pallidin‐muted complex (BLOC‐1). Blood 101:4402‐4407.
   Cideciyan, A.V., Rachel, R.A., Aleman, T.S., Swider, M., Schwartz, S.B., Sumaroka, A., Roman, A.J., Stone, E.M., Jacobson, S.G., and Swaroop, A. 2011. Cone photoreceptors are the main targets for gene therapy of NPHP5 (IQCB1) or NPHP6 (CEP290) blindness: Generation of an all‐cone Nphp6 hypomorph mouse that mimics the human retinal ciliopathy. Hum. Mol. Genet. 20:1411‐1423.
   Cocquempot, O., Brault, V., Babinet, C., and Herault, Y. 2009. Fork stalling and template switching as a mechanism for polyalanine tract expansion affecting the DYC mutant of HOXD13, a new murine model of synpolydactyly. Genetics 183:23‐30.
   Cook, S.A., Collin, G.B., Bronson, R.T., Naggert, J.K., Liu, D.P., Akeson, E.C., and Davisson, M.T. 2009. A mouse model for Meckel syndrome type 3. J. Am. Soc. Nephrol. 20:753‐764.
   Curtain, M.M. and Donahue, L.R. 2007. A short face mutation on Chromosome 11, MGI Direct Data Submission.
   D'Ascenzo, M., Meacham, C., Kitzman, J., Middle, C., Knight, J., Winer, R., Kukricar, M., Richmond, T., Albert, T.J., Czechanski, A., Donahue, L.R., Affourtit, J., Jeddeloh, J.A., and Reinholdt, L. 2009. Mutation discovery in the mouse using genetically guided array capture and resequencing. Mamm Genome 20:424‐436.
   Fairfield, H., Gilbert, G.J., Barter, M., Corrigan, R.R., Curtain, M., Ding, Y., D'Ascenzo, M., Gerhardt, D.J., He, C., Huang, W., Richmond, T., Rowe, L., Probst, F.J., Bergstrom, D.E., Murray, S.A., Bult, C., Richardson, J., Kile, B., Gut, I., Hager, J., Sigurdsson, S., Mauceli, E., Di Palma, F., Lindblad‐Toh, K., Cunningham, M.L., Cox, T.C., Justice, M.J., Spector, M.S., Lowe, S.W., Albert, T., Donahue, L.R., Jeddeloh, J., Shendure, J., and Reinholdt, L.G. 2011. Mutation discovery in mice by whole exome sequencing. Genome Biol. 12:R86.
   Fan, Y., Rudert, W.A., Grupillo, M., He, J., Sisino, G., and Trucco, M. 2009. Thymus‐specific deletion of insulin induces autoimmune diabetes. EMBO J. 28:2812‐2824.
   Frazer, K.A., Eskin, E., Kang, H.M., Bogue, M.A., Hinds, D.A., Beilharz, E.J., Gupta, R.V., Montgomery, J., Morenzoni, M.M., Nilsen, G.B., Pethiyagoda, C.L., Stuve, L.L., Johnson, F.M., Daly, M.J., Wade, C.M., and Cox, D.R. 2007. A sequence‐based variation map of 8.27 million SNPs in inbred mouse strains. Nature 448:1050‐1053.
   Friedman, J.S., Chang, B., Kannabiran, C., Chakarova, C., Singh, H.P., Jalali, S., Hawes, N.L., Branham, K., Othman, M., Filippova, E., Thompson, D.A., Webster, A.R., Andreasson, S., Jacobson, S.G., Bhattacharya, S.S., Heckenlively, J.R., and Swaroop, A. 2006. Premature truncation of a novel protein, RD3, exhibiting subnuclear localization is associated with retinal degeneration. Am. J. Hum. Genet. 79:1059‐1070.
   Garvey, S.M., Rajan, C., Lerner, A.P., Frankel, W.N., and Cox, G.A. 2002. The muscular dystrophy with myositis (mdm) mouse mutation disrupts a skeletal muscle‐specific domain of titin. Genomics 79:146‐149.
   Gwynn, B., Ciciotte, S.L., Hunter, S.J., Washburn, L.L., Smith, R.S., Andersen, S.G., Swank, R.T., Dell'Angelica, E.C., Bonifacino, J.S., Eicher, E.M., and Peters, L.L. 2000. Defects in the cappuccino (cno) gene on mouse chromosome 5 and human 4p cause Hermansky‐Pudlak syndrome by an AP‐3‐independent mechanism. Blood 96:4227‐4235.
   Gwynn, B., Martina, J.A., Bonifacino, J.S., Sviderskaya, E.V., Lamoreux, M.L., Bennett, D.C., Moriyama, K., Huizing, M., Helip‐Wooley, A., Gahl, W.A., Webb, L.S., Lambert, A.J., and Peters, L.L. 2004. Reduced pigmentation (rp), a mouse model of Hermansky‐Pudlak syndrome, encodes a novel component of the BLOC‐1 complex. Blood 104:3181‐3189.
   Harris, B.S., Franz, T., Ullrich, S., Cook, S., Bronson, R.T., and Davisson, M.T. 1997. Forebrain overgrowth (fog): A new mutation in the mouse affecting neural tube development. Teratology 55:231‐240.
   Honarpour, N., Du, C., Richardson, J.A., Hammer, R.E., Wang, X., and Herz, J. 2000. Adult Apaf‐1‐deficient mice exhibit male infertility. Dev. Biol. 218:248‐258.
   Honarpour, N., Gilbert, S.L., Lahn, B.T., Wang, X., and Herz, J. 2001. Apaf‐1 deficiency and neural tube closure defects are found in fog mice. Proc. Natl. Acad. Sci. U.S.A. 98:9683‐9687.
   Johnson, K.R., Lane, P.W., Ward‐Bailey, P., and Davisson, M.T. 1995. Mapping the mouse dactylaplasia mutation, Dac, and a gene that controls its expression, mdac. Genomics 29:457‐464.
   Johnson, K.R., Sweet, H.O., Donahue, L.R., Ward‐Bailey, P., Bronson, R.T., and Davisson, M.T. 1998. A new spontaneous mouse mutation of Hoxd13 with a polyalanine expansion and phenotype similar to human synpolydactyly. Hum. Mol. Genet. 7:1033‐1038.
   Johnson, K.R., Lane, P.W., Cook, S.A., Harris, B.S., Ward‐Bailey, P.F., Bronson, R.T., Lyons, B.L., Shultz, L.D., and Davisson, M.T. 2003. Curly bare (cub), a new mouse mutation on chromosome 11 causing skin and hair abnormalities, and a modifier gene (mcub) on chromosome 5. Genomics 81:6‐14.
   Johnson, K.R., Zheng, Q.Y., and Noben‐Trauth, K. 2006. Strain background effects and genetic modifiers of hearing in mice. Brain Res. 1091:79‐88.
   Juriloff, D.M., Harris, M.J., and Dewell, S.L. 2004. A digenic cause of cleft lip in A‐strain mice and definition of candidate genes for the two loci. Birth Defects Res. A Clin. Mol. Teratol. 70:509‐518.
   Juriloff, D.M., Harris, M.J., McMahon, A.P., Carroll, T.J., and Lidral, A.C. 2006. Wnt9b is the mutated gene involved in multifactorial nonsyndromic cleft lip with or without cleft palate in A/WySn mice, as confirmed by a genetic complementation test. Birth Defects Res. A Clin. Mol. Teratol. 76:574‐579.
   Justice, M.J. 2000. Capitalizing on large‐scale mouse mutagenesis screens. Nat. Rev. Genet. 1:109‐115.
   Karst, S.Y., Ward‐Bailey, P.F., Washburn, L.L., Bergstrom, D.E., Donahue, L.R., and Davisson‐Fahey, M.T. 2011. Vaginal imperforation; a new mutation on Chromosome 13 causing a reproductive phenotype, MGI Direct Data Submission.
   Keane, T.M., Goodstadt, L., Danecek, P., White, M.A., Wong, K., Yalcin, B., Heger, A., Agam, A., Slater, G., Goodson, M., Furlotte, N.A., Eskin, E., Nellaker, C., Whitley, H., Cleak, J., Janowitz, D., Hernandez‐Pliego, P., Edwards, A., Belgard, T.G., Oliver, P.L., McIntyre, R.E., Bhomra, A., Nicod, J., Gan, X., Yuan, W., van der Weyden, L., Steward, C.A., Bala, S., Stalker, J., Mott, R., Durbin, R., Jackson, I.J., Czechanski, A., Guerra‐Assuncao, J.A., Donahue, L.R., Reinholdt, L.G., Payseur, B.A., Ponting, C.P., Birney, E., Flint, J., and Adams, D.J. 2011. Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477:289‐294.
   Kirby, A., Kang, H.M., Wade, C.M., Cotsapas, C., Kostem, E., Han, B., Furlotte, N., Kang, E.Y., Rivas, M., Bogue, M.A., Frazer, K.A., Johnson, F.M., Beilharz, E.J., Cox, D.R., Eskin, E., and Daly, M.J. 2010. Fine mapping in 94 inbred mouse strains using a high‐density haplotype resource. Genetics 185:1081‐1095.
   Kiss, P.J., Knisz, J., Zhang, Y., Baltrusaitis, J., Sigmund, C.D., Thalmann, R., Smith, R.J., Verpy, E., and Bánfi, B. 2006. Inactivation of NADPH oxidase organizer 1 results in severe imbalance. Curr. Biol. 16:208‐213.
   Lee, C.H., Reifsnyder, P.C., Naggert, J.K., Wasserfall, C., Atkinson, M.A., Chen, J., and Leiter, E.H. 2005. Novel leptin receptor mutation in NOD/LtJ mice suppresses type 1 diabetes progression: I. Pathophysiological analysis. Diabetes 54:2525‐2532.
   Lee, J.W., Beebe, K., Nangle, L.A., Jang, J., Longo‐Guess, C.M., Cook, S.A., Davisson, M.T., Sundberg, J.P., Schimmel, P., and Ackerman, S.L. 2006. Editing‐defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature 443:50‐55.
   Li, X., Li, W., Dai, X., Kong, F., Zheng, Q., Zhou, X., Lu, F., Chang, B., Rohrer, B., Hauswirth, W.W., Qu, J., and Pang, J.J. 2011. Gene therapy rescues cone structure and function in the 3‐month‐old rd12 mouse: A model for midcourse RPE65 leber congenital amaurosis. Invest. Ophthalmol. Vis. Sci. 52:7‐15.
   Liang, Y., Seymour, R.E., and Sundberg, J.P. 2011. Inhibition of NF‐kappaB signaling retards eosinophilic dermatitis in SHARPIN‐deficient mice. J. Invest. Dermatol. 131:141‐149.
   Longo‐Guess, C.M., Gagnon, L.H., Cook, S.A., Wu, J., Zheng, Q.Y., and Johnson, K.R. 2005. A missense mutation in the previously undescribed gene Tmhs underlies deafness in hurry‐scurry (hscy) mice. Proc. Natl. Acad. Sci. U.S.A. 102:7894‐7899.
   Lorenz‐Depiereux, B., Guido, V.E., Johnson, K.R., Zheng, Q.Y., Gagnon, L.H., Bauschatz, J.D., Davisson, M.T., Washburn, L.L., Donahue, L.R., Strom, T.M., and Eicher, E.M. 2004. New intragenic deletions in the Phex gene clarify XLH‐related abnormalities in mice. Mamm. Genome 15:151‐161.
   Merath, K.M., Chang, B., Dubietzig, R., Jeannotte, R., and Sidjanin, D. J. 2011. A spontaneous mutation in Srebf2 leads to cataracts and persistent skin wounds in the lens opacity 13 (lop13) mouse. Mamm Genome 22:661‐673.
   Nadeau, J.H. 2003. Modifier genes and protective alleles in humans and mice. Curr. Opin. Genet. Dev. 13:290‐295.
   Nair, K.S., Hmani‐Aifa, M., Ali, Z., Kearney, A.L., Salem, S.B., Macalinao, D.G., Cosma, I.M., Bouassida, W., Hakim, B., Benzina, Z., Soto, I., Soderkvist, P., Howell, G.R., Smith, R.S., Ayadi, H., and John, S.W. 2011. Alteration of the serine protease PRSS56 causes angle‐closure glaucoma in mice and posterior microphthalmia in humans and mice. Nat. Genet. 43:579‐584.
   Nakano, Y., Longo‐Guess, C.M., Bergstrom, D.E., Nauseef, W.M., Jones, S.M., and Bánfi, B. 2008. Mutation of the Cyba gene encoding p22phox causes vestibular and immune defects in mice. J. Clin. Invest. 118:1176‐1185.
   Nguyen, T., Novak, E.K., Kermani, M., Fluhr, J., Peters, L.L., Swank, R.T., and Wei, M.L. 2002. Melanosome morphologies in murine models of hermansky‐pudlak syndrome reflect blocks in organelle development. J. Invest. Dermatol. 119:1156‐1164.
   Noben‐Trauth, K., Zheng, Q.Y., and Johnson, K.R. 2003. Association of cadherin 23 with polygenic inheritance and genetic modification of sensorineural hearing loss. Nat. Genet. 35:21‐23.
   Odeh, H., Hunker, K.L., Belyantseva, I.A., Azaiez, H., Avenarius, M.R., Zheng, L., Peters, L.M., Gagnon, L.H., Hagiwara, N., Skynner, M.J., Brilliant, M.H., Allen, N.D., Riazuddin, S., Johnson, K.R., Raphael, Y., Najmabadi, H., Friedman, T.B., Bartles, J.R., Smith, R.J., and Kohrman, D.C. 2010. Mutations in Grxcr1 are the basis for inner ear dysfunction in the pirouette mouse. Am. J. Hum. Genet. 86:148‐160.
   Odgren, P.R., Pratt, C.H., Mackay, C.A., Mason‐Savas, A., Curtain, M., Shopland, L., Ichicki, T., Sundberg, J.P., and Donahue, L.R. 2010. Disheveled hair and ear (Dhe), a spontaneous mouse Lmna mutation modeling human laminopathies. PloS One 5:e9959.
   Paffenholz, R., Bergstrom, R.A., Pasutto, F., Wabnitz, P., Munroe, R.J., Jagla, W., Heinzmann, U., Marquardt, A., Bareiss, A., Laufs, J., Russ, A., Stumm, G., Schimenti, J.C., and Bergstrom, D.E. 2004. Vestibular defects in head‐tilt mice result from mutations in Nox3, encoding an NADPH oxidase. Genes Dev. 18:486‐491.
   Pang, J.J., Chang, B., Hawes, N.L., Hurd, R.E., Davisson, M.T., Li, J., Noorwez, S.M., Malhotra, R., McDowell, J.H., Kaushal, S., Hauswirth, W.W., Nusinowitz, S., Thompson, D.A., and Heckenlively, J.R. 2005. Retinal degeneration 12 (rd12): A new, spontaneously arising mouse model for human Leber congenital amaurosis (LCA). Mol. Vision 11:152‐162.
   Pang, J., Boye, S.E., Lei, B., Boye, S.L., Everhart, D., Ryals, R., Umino, Y., Rohrer, B., Alexander, J., Li, J., Dai, X., Li, Q., Chang, B., Barlow, R., and Hauswirth, W.W. 2010. Self‐complementary AAV‐mediated gene therapy restores cone function and prevents cone degeneration in two models of Rpe65 deficiency. Gene Ther. 17:815‐826.
   Plamondon, J.A., Harris, M.J., Mager, D.L., Gagnier, L., and Juriloff, D.M. 2011. The clf2 gene has an epigenetic role in the multifactorial etiology of cleft lip and palate in the A/WySn mouse strain. Birth Defects Res. A Clin. Mol. Teratol. 91:716‐727.
   Plosch, T., Bloks, V.W., Terasawa, Y., Berdy, S., Siegler, K., Van Der Sluijs, F., Kema, I.P., Groen, A.K., Shan, B., Kuipers, F., and Schwarz, M. 2004. Sitosterolemia in ABC‐transporter G5‐deficient mice is aggravated on activation of the liver‐X receptor. Gastroenterology 126:290‐300.
   Probst, F.J. and Justice, M.J. 2010. Mouse mutagenesis with the chemical supermutagen ENU. Methods Enzymol. 477:297‐312.
   Pruitt, K.D., Tatusova, T., and Maglott, D.R. 2007. NCBI reference sequences (RefSeq): A curated non‐redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 35:D61‐D65.
   Pruitt, K.D., Tatusova, T., Klimke, W., and Maglott, D.R. 2009. NCBI reference sequences: Current status, policy and new initiatives. Nucleic Acids Res. 37:D32‐D36.
   Radke, M.H., Peng, J., Wu, Y., McNabb, M., Nelson, O.L., Granzier, H., and Gotthardt, M. 2007. Targeted deletion of titin N2B region leads to diastolic dysfunction and cardiac atrophy. Proc. Natl. Acad. Sci. U.S.A. 104:3444‐3449.
   Romeo, G. and McKusick, V.A. 1994. Phenotypic diversity, allelic series and modifier genes. Nat. Genet. 7:451‐453.
   Russell, W.L., Kelly, E.M., Hunsicker, P.R., Bangham, J.W., Maddux, S.C., and Phipps, E.L. 1979. Specific‐locus test shows ethylnitrosourea to be the most potent mutagen in the mouse. Proc. Natl. Acad. Sci. U.S.A. 76:5818‐5819.
   Sands, M.S., Wolfe, J.H., Birkenmeier, E.H., Barker, J.E., Vogler, C., Sly, W.S., Okuyama, T., Freeman, B., Nicholes, A., Muzyczka, N., Chang, P.L., and Axelrod, H.R. 1997. Gene therapy for murine mucopolysaccharidosis type VII. Neuromuscul. Disord. 7:352‐360.
   Schlager, G. and Dickie, M.M. 1971. Natural mutation rates in the house mouse. Estimates for five specific loci and dominant mutations. Mutat. Res. 11:89‐96.
   Seymour, R.E., Hasham, M.G., Cox, G.A., Shultz, L.D., Hogenesch, H., Roopenian, D.C., and Sundberg, J.P. 2007. Spontaneous mutations in the mouse Sharpin gene result in multiorgan inflammation, immune system dysregulation and dermatitis. Genes Immun. 8:416‐421.
   Signorini, S., Liao, Y.J., Duncan, S.A., Jan, L.Y., and Stoffel, M. 1997. Normal cerebellar development but susceptibility to seizures in mice lacking G protein‐coupled, inwardly rectifying K+ channel GIRK2. Proc. Natl. Acad. Sci. U.S.A. 94:923‐927.
   Simon‐Chazottes, D., Tutois, S., Kuehn, M., Evans, M., Bourgade, F., Cook, S., Davisson, M.T., and Guenet, J.L. 2006. Mutations in the gene encoding the low‐density lipoprotein receptor LRP4 cause abnormal limb development in the mouse. Genomics 87:673‐677.
   Surmeier, D.J., Mermelstein, P.G., and Goldowitz, D. 1996. The weaver mutation of GIRK2 results in a loss of inwardly rectifying K+ current in cerebellar granule cells. Proc. Natl. Acad. Sci. U.S.A. 93:11191‐11195.
   Turner, D.J., Keane, T.M., Sudbery, I., and Adams, D.J. 2009. Next‐generation sequencing of vertebrate experimental organisms. Mamm. Genome 20:327‐338.
   Wang, J., Takeuchi, T., Tanaka, S., Kubo, S.K., Kayo, T., Lu, D., Takata, K., Koizumi, A., and Izumi, T. 1999. A mutation in the insulin 2 gene induces diabetes with severe pancreatic beta‐cell dysfunction in the Mody mouse. J. Clin. Invest. 103:27‐37.
   Waterston, R.H., Lindblad‐Toh, K., Birney, E., Rogers, J., Abril, J.F., Agarwal, P., Agarwala, R., Ainscough, R., Alexandersson, M., An, P., Antonarakis, S.E., Attwood, J., Baertsch, R., Bailey, J., Barlow, K., Beck, S., Berry, E., Birren, B., Bloom, T., Bork, P., Botcherby, M., Bray, N., Brent, M.R., Brown, D.G., Brown, S.D., Bult, C., Burton, J., Butler, J., Campbell, R.D., Carninci, P., Cawley, S., Chiaromonte, F., Chinwalla, A.T., Church, D.M., Clamp, M., Clee, C., Collins, F.S., Cook, L.L., Copley, R.R., Coulson, A., Couronne, O., Cuff, J., Curwen, V., Cutts, T., Daly, M., David, R., Davies, J., Delehaunty, K.D., Deri, J., Dermitzakis, E.T., Dewey, C., Dickens, N.J., Diekhans, M., Dodge, S., Dubchak, I., Dunn, D.M., Eddy, S.R., Elnitski, L., Emes, R.D., Eswara, P., Eyras, E., Felsenfeld, A., Fewell, G.A., Flicek, P., Foley, K., Frankel, W.N., Fulton, L.A., Fulton, R.S., Furey, T.S., Gage, D., Gibbs, R.A., Glusman, G., Gnerre, S., Goldman, N., Goodstadt, L., Grafham, D., Graves, T.A., Green, E.D., Gregory, S., Guigo, R., Guyer, M., Hardison, R.C., Haussler, D., Hayashizaki, Y., Hillier, L.W., Hinrichs, A., Hlavina, W., Holzer, T., Hsu, F., Hua, A., Hubbard, T., Hunt, A., Jackson, I., Jaffe, D.B., Johnson, L.S., Jones, M., Jones, T.A., Joy, A., Kamal, M., Karlsson, E.K., et al. 2002. Initial sequencing and comparative analysis of the mouse genome. Nature 420:520‐562.
   Weatherbee, S.D., Anderson, K.V., and Niswander, L.A. 2006. LDL‐receptor‐related protein 4 is crucial for formation of the neuromuscular junction. Development 133:4993‐5000.
   Weinert, S., Bergmann, N., Luo, X., Erdmann, B., and Gotthardt, M. 2006. M line‐deficient titin causes cardiac lethality through impaired maturation of the sarcomere. J. Cell Biol. 173:559‐570.
   Wilming, L.G., Gilbert, J.G., Howe, K., Trevanion, S., Hubbard, T., and Harrow, J.L. 2008. The vertebrate genome annotation (Vega) database. Nucleic Acids Res. 36:D753‐D760.
   Wong, K., Keane, T.M., Stalker, J., and Adams, D.J. 2010. Enhanced structural variant and breakpoint detection using SVMerge by integration of multiple detection methods and local assembly. Genome Biol. 11:R128.
   Yoshida, H., Kong, Y.Y., Yoshida, R., Elia, A.J., Hakem, A., Hakem, R., Penninger, J.M., and Mak, T.W. 1998. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94:739‐750.
   Zhang, Z., Alpert, D., Francis, R., Chatterjee, B., Yu, Q., Tansey, T., Sabol, S.L., Cui, C., Bai, Y., Koriabine, M., Yoshinaga, Y., Cheng, J.F., Chen, F., Martin, J., Schackwitz, W., Gunn, T.M., Kramer, K.L., De Jong, P.J., Pennacchio, L.A., and Lo, C.W. 2009. Massively parallel sequencing identifies the gene Megf8 with ENU‐induced mutation causing heterotaxy. Proc. Natl. Acad. Sci. U.S.A. 106:3219‐3224.
   Zhao, L., Longo‐Guess, C., Harris, B.S., Lee, J.W., and Ackerman, S.L. 2005. Protein accumulation and neurodegeneration in the woozy mutant mouse is caused by disruption of SIL1, a cochaperone of BiP. Nat. Genet. 37:974‐979.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library