Overexpression Models: Lentiviral Modeling of Brain Cancer

Dinorah Friedmann‐Morvinski1, Oded Singer1

1 The Salk Institute for Biological Studies, La Jolla, California
Publication Name:  Current Protocols in Mouse Biology
Unit Number:   
DOI:  10.1002/9780470942390.mo110271
Online Posting Date:  June, 2013
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Glioblastoma multiforme (GBM) is one of the most common and most malignant of the brain tumors. Gliomas can be classified into four different grades according to their histologic characteristics; the most aggressive of the gliomas is glioblastoma multiforme (grade IV). Despite optimal treatment, the median survival is only 12 to 15 months. In the past few years, important advances were made in understanding the biology and pathology of malignant gliomas. A mouse model of brain tumors using inducible lentiviral vectors is described here. In this approach, a lenti‐vector with loxP sites flanking the gene of interest (oncogene) is injected into mice expressing Cre recombinase under the control of a brain‐specific promoter. The steps to perform cell‐type/region‐specific injection of Cre‐loxP‐controlled lentiviral vectors in the brain of adult mice are described here in detail. Curr. Protoc. Mouse Biol. 3:121‐139 © 2013 by John Wiley & Sons, Inc.

Keywords: gliomas; lentivirus gene transfer; genetic alterations; Cre‐loxP system; gene delivery

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Design and Cloning of Lentivectors Expressing Oncogenes and shRNAs
  • Basic Protocol 2: Production of Lentiviral Vectors
  • Basic Protocol 3: Stereotaxic Injection of Lentivirus into the Brain
  • Basic Protocol 4: Tissue Processing and Imaging
  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Design and Cloning of Lentivectors Expressing Oncogenes and shRNAs

  Materials
  • Primers
  • Pol III promoters plasmids (pH1, phU6 or pmU6) and appropriate lentiviral vectors (Verma Laboratory, Salk Institute for Biological Studies, )
  • Advantage GC‐2 polymerase mix (BD Biosciences) with GC melt or Taq polymerase with 7% DMSO
  • Appropriate enzymes
  • Thermal cycler
  • Additional reagents and equipment for PCR amplification (Kuslich et al., ), cloning (Finney et al., ), and sequencing (Shendure et al., )

Basic Protocol 2: Production of Lentiviral Vectors

  Materials
  • 293T HEK mammalian cells (ATCC #CRL‐11268)
  • DMEM plus 10% FBS
  • 10% poly‐L‐lysine (SIGMA, cat. no. P‐4832) in PBS, filter sterilize and store indefinitely at 4°C
  • Plasmids:
    • Lentiviral transfer vector (Verma Laboraory, Salk Institute for Biological Studies, )
    • Lentiviral packaging vectors: pMDL, pRev, and pVSVG (Addgene)
    • Endotoxin‐free maxipreps (Endo‐free Maxiprep Kit, Qiagen, cat. no. 12632, or equivalent)
    • 1 µg/µl resuspended DNA
  • 2.5 M CaCl 2 stock solution: 36.75 g CaCl 2 in 70 ml ddH 2O, bring to final volume of 100 ml, dispense into 1.5‐ml microcentrifuge tubes, and store indefinitely at −20°C
  • 2× BBS solution (50 mM BES/280 mM NaCl/1.5 mM Na 2HPO 4): 16.36 g NaCl, 10.65 g BES (Calbiochem, cat. no. 391334), 0.21 g Na 2HPO 4, add ddH 2O up to 900 ml; dissolve, titrate to pH 6.95 with 1 M NaOH, bring volume up to 1 liter, filter to sterilize, and store 14‐ml aliquots indefinitely at 4°C
  • Hanks' balanced salt solution (HBSS, GIBCO, cat. no. 14175)
  • 20% sucrose in 1× HBSS (filter sterilize and store indefinitely at 4°C)
  • 12 × 15–cm tissue culture dishes
  • 50‐ml tubes
  • 37°C, 3% to 5% CO 2 tissue culture incubator
  • Fluorescent microscope
  • 37°C, 10% CO 2 tissue culture incubator
  • 0.45‐µm filter units, 500‐ml capacity (Corning, cat. no. 430773)
  • Conical bottom ultracentrifugation tubes (Beckman, cat. no. 358126)
  • Beckman ultracentrifuge and Beckman SW28 rotor (or equivalent)
  • Aspirator
  • Round‐bottom ultracentrifugation tubes (Beckman, cat. no. 326819)
  • Beckman SW55 swinging bucket rotor (or equivalent)
  • 1.5‐ml screw‐cap microcentrifuge tubes
  • 12‐well plates
CAUTION: Working with lentiviral vectors requires Biosafety level II containment. For safety procedures regarding handling of lentiviral vector preparations, see Biosafety in Microbiological and Biomedical Laboratories, 4th edition, published by the Centers for Disease Control (CDC), which can be found at http://www.cdc.gov/od/ohs/biosfty/bmb14/bmb14toc.htm.

Basic Protocol 3: Stereotaxic Injection of Lentivirus into the Brain

  Materials
  • Anesthetics: 10 mg/ml ketamine and 1 mg/ml xylazine in 0.9% saline
  • 8‐ to 16‐week‐old GFAP‐Cre mice
  • Artificial tears (eye lubricant ointment, Butler, cat. no. AHS NDC 11695‐1418‐6)
  • Betadine surgical scrub
  • 70% ethanol
  • Sterile PBS
  • Hydrogen peroxide (Sigma, cat. no. H‐1009)
  • Virus solution (see protocol 2)
  • Tissue adhesive (3M Vetbond, cat. no. 1469SB)
  • Biosafety level‐2 facility
  • Warming pad
  • Electric hair trimmer or shaver
  • Stereotaxic instrument (KOPF model 900)
  • Cotton swabs
  • Surgical tools
  • Microsyringes (Hamilton, cat. no. 87925)
  • 33‐G needles for microsyringes (Hamilton, cat. no. 7762‐06)
  • Marker pen
  • Electric drill and drill burr, size no. 1 (Henry Shein, cat. no. 100‐7176)
  • 4‐0 nylon thread
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Agemy, L., Friedmann‐Morvinski, D., Kotamraju, V.R., Roth, L., Sugahara, K.N., Girard, O.M., Mattrey, R.F., Verma, I.M., and Ruoslahti, E. 2011. Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma. Proc. Natl. Acad. Sci. U.S.A. 108:17450‐17455.
   Aguzzi, A., Brandner, S., Isenmann, S., Steinbach, J.P., and Sure, U. 1995. Transgenic and gene disruption techniques in the study of neurocarcinogenesis. Glia 15:348‐364.
   Brummelkamp, T.R., Bernards, R., and Agami, R. 2002. A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550‐553.
   CBTRUS. 2008. Stastical report: Primary brain tumors in the United States, 199‐2002. Central Brain Tumor Registry of the United States, 2000‐2004 (Accessed July 7, 2008, at http://www.cbtrus.org/reports/2007‐2008/2007report.pdf).
   Charest, A., Wilker, E.W., McLaughlin, M.E., Lane, K., Gowda, R., Coven, S., McMahon, K., Kovach, S., Feng, Y., Yaffe, M.B., Jacks, T., and Housman, D. 2006. ROS fusion tyrosine kinase activates a SH2 domain‐containing phosphatase‐2/phosphatidylinositol 3‐kinase/mammalian target of rapamycin signaling axis to form glioblastoma in mice. Cancer Res. 66:7473‐7481.
   Chen, J., Kwon, C.H., Lin, L., Li, Y., and Parada, L.F. 2009. Inducible site‐specific recombination in neural stem/progenitor cells. Genesis 47:122‐131.
   Clemens, M.J. and Elia, A. 1997. The double‐stranded RNA‐dependent protein kinase PKR: Structure and function. J. Interferon. Cytokine Res. 17:503‐524.
   Dahlstrand, J., Collins, V.P., and Lendahl, U. 1992. Expression of the class VI intermediate filament nestin in human central nervous system tumors. Cancer Res. 52:5334‐5341.
   Denli, A.M. and Hannon, G.J. 2003. RNAi: An ever‐growing puzzle. Trends Biochem. Sci. 28:196‐201.
   Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. 2001. Duplexes of 21‐nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494‐498.
   Finney, M., Nisson, P.E., and Rashtchian, A. 2001. Molecular cloning of PCR products. Curr. Protoc. Mol. Biol. 56:15.4.1‐15.4.11.
   Fjose, A., Ellingsen, S., Wargelius, A., and Seo, H.C. 2001. RNA interference: Mechanisms and applications. Biotechnol. Annu. Rev. 7:31‐57.
   Furnari, F.B., Fenton, T., Bachoo, R.M., Mukasa, A., Stommel, J.M., Stegh, A., Hahn, W.C., Ligon, K.L., Louis, D.N., Brennan, C., Chin, L., DePinho, R.A., and Cavenee, W.K. 2007. Malignant astrocytic glioma: Genetics, biology, and paths to treatment. Genes Dev. 21:2683‐2710.
   Gage, F.H., Coates, P.W., Palmer, T.D., Kuhn, H.G., Fisher, L.J., Suhonen, J.O., Peterson, D.A., Suhr, S.T., and Ray, J. 1995. Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc. Natl. Acad. Sci. U.S.A. 92:11879‐11883.
   Gagneux, P., Cheriyan, M., Hurtado‐Ziola, N., van der Linden, E.C., Anderson, D., McClure, H., Varki, A., and Varki, N.M. 2003. Human‐specific regulation of alpha 2‐6‐linked sialic acids. J. Biol. Chem. 278:48245‐48250.
   Gao, X., Kemper, A., and Popko, B. 1999. Advanced transgenic and gene‐targeting approaches. Neurochem. Res. 24:1181‐1188.
   Hannon, G.J. 2002. RNA interference. Nature 418:244‐251.
   Holland, E.C. and Varmus, H.E. 1998. Basic fibroblast growth factor induces cell migration and proliferation after glia‐specific gene transfer in mice. Proc. Natl. Acad. Sci. U.S.A. 95:1218‐1223.
   Holland, E.C., Celestino, J., Dai, C., Schaefer, L., Sawaya, R.E., and Fuller, G.N. 2000. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat. Genet. 25:55‐57.
   Holmen, S.L. and Williams, B.O. 2005. Essential role for Ras signaling in glioblastoma maintenance. Cancer Res. 65:8250‐8255.
   Kuslich, C.D., Chui, B., and Yamashiro, C.T. 2008. Overview of PCR. Curr. Protoc. Essential Lab. Tech. 00:10.2.1‐10.2.31.
   Kwon, C.H., Zhao, D., Chen, J., Alcantara, S., Li, Y., Burns, D.K., Mason, R.P., Lee, E.Y., Wu, H., and Parada, L.F. 2008. Pten haploinsufficiency accelerates formation of high‐grade astrocytomas. Cancer Res. 68:3286‐3294.
   Lois, C., Hong, E.J., Pease, S., Brown, E.J., and Baltimore, D. 2002. Germline transmission and tissue‐specific expression of transgenes delivered by lentiviral vectors. Science 295:868‐872.
   Marumoto, T., Tashiro, A., Friedmann‐Morvinski, D., Scadeng, M., Soda, Y., Gage, F.H., and Verma, I.M. 2009. Development of a novel mouse glioma model using lentiviral vectors. Nat. Med. 15:110‐116.
   McLendon, R., Friedman, A., Bigner, D., Van Meir, E.G., Brat, D.J., Mastrogianakis, M., Olson, J.J., Mikkelsen, T., Lehman, N., Aldape, K., Alfred Yung, W.K., Bogler, O., Vandenberg, S., Berger, M., Prados, M., Muzny, D., Morgan, M., Scherer, S., Sabo, A., Nazareth, L., Lewis, L., Hall, O., Zhu, Y., Ren, Y., Alvi, O., Yao, J., Hawes, A., Jhangiani, S., Fowler, G., San Lucas, A., Kovar, C., Cree, A., Dinh, H., Santibanez, J., Joshi, V., Gonzalez‐Garay, M.L., Miller, C.A., Milosavljevic, A., Donehower, L., Wheeler, D.A., Gibbs, R.A., Cibulskis, K., Sougnez, C., Fennell, T., Mahan, S., Wilkinson, J., Ziaugra, L., Onofrio, R., Bloom, T., Nicol, R., Ardlie, K., Baldwin, J., Gabriel, S., Lander, E.S., Ding, L., Fulton, R.S., McLellan, M.D., Wallis, J., Larson, D.E., Shi, X., Abbott, R., Fulton, L., Chen, K., Koboldt, D.C., Wendl, M.C., Meyer, R., Tang, Y., Lin, L., Osborne, J.R., Dunford‐Shore, B.H., Miner, T.L., Delehaunty, K., Markovic, C., Swift, G., Courtney, W., Pohl, C., Abbott, S., Hawkins, A., Leong, S., Haipek, C., Schmidt, H., Wiechert, M., Vickery, T., Scott, S., Dooling, D.J., Chinwalla, A., Weinstock, G.M., Mardis, E.R., Wilson, R.K., Getz, G., Winckler, W., Verhaak, R.G., Lawrence, M.S., O'Kelly, M., Robinson, J., Alexe, G., Beroukhim, R., Carter, S., Chiang, D., Gould, J., Gupta, S., Korn, J., Mermel, C., Mesirov, J., Monti, S., Nguyen, H., Parkin, M., Reich, M., Stransky, N., Weir, B.A., Garraway, L., Golub, T., Meyerson, M., Chin, L., Protopopov, A., Zhang, J., Perna, I., Aronson, S., Sathiamoorthy, N., Ren, G., Wiedemeyer, W.R., Kim, H., Won Kong, S., Xiao, Y., Kohane, I.S., Seidman, J., Park, P.J., Kucherlapati, R., Laird, P.W., Cope, L., Herman, J.G., Weisenberger, D.J., Pan, F., Van Den Berg, D., Van Neste, L., Mi Yi, J., Schuebel, K.E., Baylin, S.B., Absher, D.M., Li, J.Z., Southwick, A., Brady, S., Aggarwal, A., Chung, T., Sherlock, G., Brooks, J.D., Myers, R.M., Spellman, P.T., Purdom, E., Jakkula, L.R., Lapuk, A.V., Marr, H., Dorton, S., Gi Choi, Y., Han, J., Ray, A., Wang, V., Durinck, S., Robinson, M., Wang, N.J., Vranizan, K., Peng, V., Van Name, E., Fontenay, G.V., Ngai, J., Conboy, J.G., Parvin, B., Feiler, H.S., Speed, T.P., Gray, J.W., Brennan, C., Socci, N.D., Olshen, A., Taylor, B.S., Lash, A., Schultz, N., Reva, B., Antipin, Y., Stukalov, A., Gross, B., Cerami, E., Qing Wang, W., Qin, L.X., Seshan, V.E., Villafania, L., Cavatore, M., Borsu, L., Viale, A., Gerald, W., Sander, C., Ladanyi, M., Perou, C.M., Neil Hayes, D., Topal, M.D., Hoadley, K.A., Qi, Y., Balu, S., Shi, Y., Wu, J., Penny, R., Bittner, M., Shelton, T., Lenkiewicz, E., Morris, S., Beasley, D., Sanders, S., Kahn, A., Sfeir, R., Chen, J., Nassau, D., Feng, L., Hickey, E., Weinstein, J.N., Barker, A., Gerhard, D.S., Vockley, J., Compton, C., Vaught, J., Fielding, P., Ferguson, M.L., Schaefer, C., Madhavan, S., Buetow, K.H., Collins, F., Good, P., Guyer, M., Ozenberger, B., Peterson, J., and Thomson, E. 2008. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061‐1068.
   McManus, M.T., Petersen, C.P., Haines, B.B., Chen, J., and Sharp, P.A. 2002. Gene silencing using micro‐RNA designed hairpins. RNA 8:842‐850.
   Miyagishi, M. and Taira, K. 2002. U6 promoter‐driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nat. Biotechnol. 20:497‐500.
   Miyoshi, H., Blomer, U., Takahashi, M., Gage, F.H., and Verma, I.M. 1998. Development of a self‐inactivating lentivirus vector. J. Virol. 72:8150‐8157.
   Naldini, L., Blomer, U., Gallay, P., Ory, D., Mulligan, R., Gage, F.H., Verma, I.M., and Trono, D. 1996. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263‐267.
   Paddison, P.J., Caudy, A.A., Bernstein, E., Hannon, G.J., and Conklin, D.S. 2002. Short hairpin RNAs (shRNAs) induce sequence‐specific silencing in mammalian cells. Genes Dev. 16:948‐958.
   Parsons, D.W., Jones, S., Zhang, X., Lin, J.C., Leary, R.J., Angenendt, P., Mankoo, P., Carter, H., Siu, I.M., Gallia, G.L., Olivi, A., McLendon, R., Rasheed, B.A., Keir, S., Nikolskaya, T., Nikolsky, Y., Busam, D.A., Tekleab, H., Diaz, L.A., Jr., Hartigan, J., Smith, D.R., Strausberg, R.L., Marie, S.K., Shinjo, S.M., Yan, H., Riggins, G.J., Bigner, D.D., Karchin, R., Papadopoulos, N., Parmigiani, G., Vogelstein, B., Velculescu, V.E., and Kinzler, K.W. 2008. An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807‐1812.
   Pfeifer, A., Ikawa, M., Dayn, Y., and Verma, I.M. 2002. Transgenesis by lentiviral vectors: Lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. Proc. Natl. Acad. Sci. U.S.A. 99:2140‐2145.
   Reynolds, A., Leake, D., Boese, Q., Scaringe, S., Marshall, W.S., and Khvorova, A. 2004. Rational siRNA design for RNA interference. Nat. Biotechnol. 22:326‐330.
   Rubinson, D.A., Dillon, C.P., Kwiatkowski, A.V., Sievers, C., Yang, L., Kopinja, J., Rooney, D.L., Zhang, M., Ihrig, M.M., McManus, M.T., Gertler, F.B., Scott, M.L., and Van Parijs, L. 2003. A lentivirus‐based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat. Genet. 33:401‐406.
   Shendure, J.A., Porreca, G.J., Church, G.M., Gardner, A.F., Hendrickson, C.L., Kieleczawa, J., and Slatko, B.E. 2011. Overview of DNA sequencing strategies. Curr. Protoc. Mol. Biol. 7.1.1‐7.1.23.
   Singer, O., Marr, R.A., Rockenstein, E., Crews, L., Coufal, N.G., Gage, F.H., Verma, I.M., and Masliah, E. 2005. Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model. Nat. Neurosci. 8:1343‐1349.
   Soda, Y., Marumoto, T., Friedmann‐Morvinski, D., Soda, M., Liu, F., Michiue, H., Pastorino, S., Yang, M., Hoffman, R.M., Kesari, S., and Verma, I.M. 2011. Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc. Natl. Acad. Sci. U.S.A. 108:4274‐4280.
   Stegmeier, F., Hu, G., Rickles, R.J., Hannon, G.J., and Elledge, S.J. 2005. A lentiviral microRNA‐based system for single‐copy polymerase II‐regulated RNA interference in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 102:13212‐13217.
   Tiscornia, G., Singer, O., Ikawa, M., and Verma, I.M. 2003. A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc. Natl. Acad. Sci. U.S.A. 100:1844‐1848.
   Trono, D. 2002. Lentiviral Vectors, vol. 261. Springer‐Verlag, Berlin‐Heidelberg.
   Uhrbom, L., Hesselager, G., Nister, M., and Westermark, B. 1998. Induction of brain tumors in mice using a recombinant platelet‐derived growth factor B‐chain retrovirus. Cancer Res. 58:5275‐5279.
   Uhrbom, L., Dai, C., Celestino, J.C., Rosenblum, M.K., Fuller, G.N., and Holland, E.C. 2002. Ink4a‐Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Res. 62:5551‐5558.
   Verhoeyen, E. and Cosset, F.L. 2004. Surface‐engineering of lentiviral vectors. J. Gene Med. 6:S83‐S94.
   Weissenberger, J., Steinbach, J.P., Malin, G., Spada, S., Rulicke, T., and Aguzzi, A. 1997. Development and malignant progression of astrocytomas in GFAP‐v‐src transgenic mice. Oncogene 14:2005‐2013.
   Wen, P.Y. and Kesari, S. 2008. Malignant gliomas in adults. N. Engl. J. Med. 359:492‐507.
   Zheng, H., Ying, H., Yan, H., Kimmelman, A.C., Hiller, D.J., Chen, A.J., Perry, S.R., Tonon, G., Chu, G.C., Ding, Z., Stommel, J.M., Dunn, K.L., Wiedemeyer, R., You, M.J., Brennan, C., Wang, Y.A., Ligon, K.L., Wong, W.H., Chin, L., and DePinho, R.A. 2008. p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature 455:1129‐1133.
   Zhu, Y., Guignard, F., Zhao, D., Liu, L., Burns, D.K., Mason, R.P., Messing, A., and Parada, L.F. 2005. Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell 8:119‐130.
   Zufferey, R., Dull, T., Mandel, R.J., Bukovsky, A., Quiroz, D., Naldini, L., and Trono, D. 1998. Self‐inactivating lentivirus vector for safe and efficient in vivo gene delivery. J. Virol. 72:9873‐9880.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library