Acute Asthma Models to Ovalbumin in the Mouse

François Daubeuf1, Nelly Frossard1

1 Laboratoire d'Innovation Thérapeutique, Faculté de Pharmacie, UMR7200 CNRS/Université de Strasbourg, Illkirch Cedex, France
Publication Name:  Current Protocols in Mouse Biology
Unit Number:   
DOI:  10.1002/9780470942390.mo120202
Online Posting Date:  March, 2013
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Human asthma is defined as a chronic inflammatory disease of the airways. Animal models are required to study asthma pathophysiology and identify and/or evaluate new therapeutic strategies. Several models of asthma have been developed in mice to mimic asthma symptoms, and can be divided in two groups as acute and chronic models. They are characterized by airway hyperresponsiveness (AHR), inflammation, and remodeling. Several experimental procedures have been implemented, the one mostly used being acute asthma models to ovalbumin. It comprises a sensitization step in the presence of aluminum hydroxide as an adjuvant, and a second step where mice are challenged with the allergen introduced directly into the airways to induce the modeled asthma features. This article describes procedures to efficiently and reproducibly obtain acute asthma features in mice, with ovalbumin as the allergen, which allow group comparisons and/or assessment of the activity of drug candidates. Curr. Protoc. Mouse Biol. 3:31‐37 © 2013 by John Wiley & Sons, Inc.

Keywords: asthma; allergy; inflammation; bronchial hyperresponsiveness

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Acute Ovalbumin Asthma Models
  • Support Protocol 1: Models of Asthma Induced by Ovalbumin
  • Commentary
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


Basic Protocol 1: Acute Ovalbumin Asthma Models

  • Ovalbumin grade V (Sigma‐Aldrich, cat. no. A5503)
  • Sterile saline
  • Aluminum hydroxide (Sigma‐Aldrich, cat. no. 23918‐6)
  • 9‐week‐old male BALB/c or C57BL/6 mice
  • Anesthetics (50 mg/kg Ketamine/3 mg/kg Xylazine), stored at 4°C
  • Precision balance (0.1 mg)
  • 50‐ml Falcon tubes
  • 1.5‐ml microtubes, sterile
  • 5 ml sterile culture tubes
  • 15‐ml sterile centrifuge tubes
  • Rotator mixer
  • 1‐ml sterile syringes
  • 25‐G needles
  • Vortex mixer
  • Sterile tips
  • Precision pipets (20 µl and 1000 µl)
  • Heating blanket or heating lamp
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Bai, T.R. and Knight, D.A. 2005. Structural changes in the airways in asthma: Observations and consequences. Clin Sci (Lond). 108:463‐477.
   Berend, N., Salome, C.M., and King, G.G. 2008. Mechanisms of airway hyperresponsiveness in asthma. Respirology 13:624‐631.
   Brewer, J.M., Conacher, M., Hunter, C.A., Mohrs, M., Brombacher, F., and Alexander, J. 1999. Aluminum hydroxide adjuvant initiates strong antigen‐specific Th2 responses in the absence of IL‐4‐ or IL‐13‐mediated signaling. J Immunol. 163:6448‐6454.
   Caceres, A.I., Brackmann, M., Elia, M.D., Bessac, B.F., del Camino, D., D'Amours, M., Witek, J.S., Fanger, C.M., Chong, J.A., Hayward, N.J., Homer, R.J., Cohn, L., Huang, X., Moran, M.M., and Jordt, S.E. 2009. A sensory neuronal ion channel essential for airway inflammation and hyperreactivity in asthma. Proc. Natl. Acad. Sci. U.S.A. 106:9099‐9104.
   Daubeuf, F. and Frossard, N. 2012. Performing bronchoalveolar lavage in the mouse. Curr. Protoc. Mouse Biol. 2:167‐175.
   Delayre‐Orthez, C., Becker, J., De Blay, F., Frossard, N., and Pons, F. 2004. Dose‐dependent effects of endotoxins on allergen sensitization and challenge in the mouse. Clin. Exp. Allergy 34:1789‐1795.
   Delayre‐Orthez, C., Becker, J., de Blay, F., Frossard, N., and Pons, F. 2005. Exposure to endotoxins during sensitization prevents further endotoxin‐induced exacerbation of airway inflammation in a mouse model of allergic asthma. Int. Arch. Allergy Clin. Immunol. 138:298‐304.
   Gasparik, V., Daubeuf, F., Hachet‐Haas, M., Rohmer, F., Gizzi, P., Haiech, J., Galzi, J.‐L., Hibert, M., Bonnet, D., and Frossard, N. 2012. Prodrugs of a CXCL12 neutraligand active in vivo in a new asthma model. ACS Med. Chem. Lett. 3:10‐14.
   Hachet‐Haas, M., Balabanian, K., Rohmer, F., Pons, F., Franchet, C., Lecat, S., Chow, K.Y., Dagher, R., Gizzi, P., Didier, B., Lagane, B., Kellenberger, E., Bonnet, D., Baleux, F., Haiech, J., Parmentier, M., Frossard, N., Arenzana‐Seisdedos, F., Hibert, M., and Galzi, J‐L. 2008. Small neutralizing molecules to inhibit actions of the chemokine CXCL12. J. Biol. Chem. 283:23189‐23199.
   Kumar, R.K., Herbert, C., and Foster, P.S. 2008. The “classical” ovalbumin challenge model of asthma in mice. Curr. Drug Targets 9:485‐494.
   Lukacs, N.W., John, A., Berlin, A., Bullard, D.C., Knibbs, R., and Stoolman, L.M. 2002. E‐ and P‐selectins are essential for the development of cockroach allergen‐induced airway responses. J. Immunol. 169:2120‐2125.
   McKee, A.S., Munks, M.W., MacLeod, M.K., Fleenor, C.J., Van Rooijen, N., Kappler, J.W., and Marrack, P. 2009. Alum induces innate immune responses through macrophage and mast cell sensors, but these sensors are not required for alum to act as an adjuvant for specific immunity. J. Immunol. 183:4403‐4414.
   Meurs, H., Gosens, R., and Zaagsma, J. 2008. Airway hyperresponsiveness in asthma: Lessons from in vitro model systems and animal models. Eur. Respir. J. 32:487‐502.
   Nials, A.T. and Uddin, S. 2008. Mouse models of allergic asthma: Acute and chronic allergen challenge. Dis. Model Mech. 1:213‐220.
   Ozier, A., Allard, B., Bara, I., Girodet, P.O., Trian, T., Marthan, R., and Berger, P. 2011. The pivotal role of airway smooth muscle in asthma pathophysiology. J. Allergy (Cairo) 2011:742710.
   Ulrich, K., Hincks, J.S., Walsh, R., Wetterstrand, E.M., Fidock, M.D., Sreckovic, S., Lamb, D.J., Douglas, G.J., Yeadon, M., Perros‐Huguet, C., and Evans, S.M. 2008. Anti‐inflammatory modulation of chronic airway inflammation in the murine house dust mite model. Pulm. Pharmacol. Ther. 21:637‐647.
PDF or HTML at Wiley Online Library