An Overview of Measuring Impulsive Behavior in Mice

Claire L. Dent1, Anthony R. Isles2

1 School of Psychology, Cardiff University, Cardiff, 2 Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff
Publication Name:  Current Protocols in Mouse Biology
Unit Number:   
DOI:  10.1002/9780470942390.mo140015
Online Posting Date:  June, 2014
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Impulsive behavior is a key constituent of many psychiatric illnesses, with maladaptive response control being a feature of disorders such as ADHD, schizophrenia, mania, and addiction. In order to understand the neurological underpinnings of impulsivity, a number of behavioral tasks have been developed for use with animal models. Data from studies with rats and other animals have led to the idea of the existence of dissociable components of impulsivity, which in turn informs studies of human disorders and potentially the development of specific therapies. Increasingly, mouse models are being used to investigate the known genetic contribution to psychiatric disorders in which abnormal response control leads to altered impulsive behaviors. In order to maximize the potential of these mouse models, it is important that researchers take into account the non‐unitary nature of response control and impulsivity. In this article, we briefly review the tasks available to behavioral neuroscientists and how these can be used in order to tease apart the contribution of a specific genetic lesion into the discrete aspects of impulsive behavior. Curr. Protoc. Mouse Biol. 4:35‐45 © 2014 by John Wiley & Sons, Inc.

Keywords: action impulsivity; choice impulsivity; operant; psychiatric genetics

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Psychiatric Genetics and the Use of Mouse Models
  • Is my Mouse Impulsive?
  • Basic Protocol for Operant Tasks
  • Training to Baseline Performance
  • Measuring Impulsive Action in Mice
  • 5CSRTT
  • Go/No‐Go and SSRTT
  • Measuring Impulsive Choice in Mice
  • Conclusions
  • Conflict of Interest
  • Acknowledgments
  • Figures
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

  Bari, A. and Robbins, T.W. 2013. Inhibition and impulsivity: Behavioral and neural basis of response control. Prog. Neurobiol. 108:44‐79.
  Benavides, D.R., Quinn, J.J., Zhong, P., Hawasli, A.H., DiLeone, R.J., Kansy, J.W., Olausson, P., Yan, Z., Taylor, J.R., and Bibb, J.A. 2007. Cdk5 modulates cocaine reward, motivation, and striatal neuron excitability. J. Neurosci. 27:12967‐12976.
  Bevilacqua, L., Doly, S., Kaprio, J., Yuan, Q., Tikkanen, R., Paunio, T., Zhou, Z., Wedenoja, J., Maroteaux, L., Diaz, S., Belmer, A., Hodgkinson, C.A., Dell'osso, L., Suvisaari, J., Coccaro, E., Rose, R.J., Peltonen, L., Virkkunen, M., and Goldman, D. 2010. A population‐specific HTR2B stop codon predisposes to severe impulsivity. Nature 468:1061‐1066.
  Bizot, J.C., Thiebot, M.H., Le Bihan, C., Soubrie, P., and Simon, P. 1988. Effects of imipramine‐like drugs and serotonin uptake blockers on delay of reward in rats. Possible implication in the behavioral mechanism of action of antidepressants. J. Pharmacol. Exp. Ther. 246:1144‐1151.
  Broos, N., Schmaal, L., Wiskerke, J., Kostelijk, L., Lam, T., Stoop, N., Weierink, L., Ham, J., de Geus, E.J., Schoffelmeer, A.N., van den Brink, W., Veltman, D.J., de Vries, T.J., Pattij, T., and Goudriaan, A.E. 2012. The relationship between impulsive choice and impulsive action: A cross‐species translational study. PloS One 7:e36781.
  Brunner, D. and Hen, R 1997. Insights into the neurobiology of impulsive behavior from serotonin receptor knockout mice. Ann. N.Y. Acad. Sci. 836:81‐105.
  Cardinal, R.N., Pennicott, D.R., Sugathapala, C.L., Robbins, T.W., and Everitt, B.J. 2001. Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science 292:2499‐2501.
  Crean, J., Richards, J.B., and de Wit, H. 2002. Effect of tryptophan depletion on impulsive behavior in men with or without a family history of alcoholism. Behav. Brain Res. 136:349‐357.
  Davies, W., Humby, T., Isles, A.R., Burgoyne, P.S., and Wilkinson, L.S. 2007. X‐monosomy effects on visuospatial attention in mice: A candidate gene and implications for turner syndrome and attention deficit hyperactivity disorder. Biol. Psychiatry 61:1351‐1360.
  Dent, C.L., Isles, A.R., and Humby, T. 2014. Measuring risk‐taking in mice: Balancing the risk between seeking reward and danger. Eur. J. Neurosci. 39:520‐530.
  Doe, C.M., Relkovic, D., Garfield, A.S., Dalley, J.W., Theobald, D.E., Humby, T., Wilkinson, L.S., and Isles, A.R. 2009. Loss of the imprinted snoRNA mbii‐52 leads to increased 5htr2c pre‐RNA editing and altered 5HT2CR‐mediated behaviour. Hum. Mol. Genet. 18:2140‐2148.
  Eagle, D.M., Bari, A., and Robbins, T.W. 2008. The neuropsychopharmacology of action inhibition: Cross‐species translation of the stop‐signal and go/no‐go tasks. Psychopharmacology 199:439‐456.
  Evenden, J.L. 1999. Varieties of impulsivity. Psychopharmacology 146:348‐361.
  Evenden, J.L. and Ryan, C.N. 1996. The pharmacology of impulsive behaviour in rats: The effects of drugs on response choice with varying delays of reinforcement. Psychopharmacology 128:161‐170.
  Fletcher, P.J., Soko, A.D., and Higgins, G.A. 2013. Impulsive action in the 5‐choice serial reaction time test in 5‐HT(2)c receptor null mutant mice. Psychopharmacology 226:561‐570.
  Grant, S.G., O'Dell, T.J., Karl, K.A., Stein, P.L., Soriano, P., and Kandel, E.R. 1992. Impaired long‐term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science 258:1903‐1910.
  Gubner, N.R., Wilhelm, C.J., Phillips, T.J., and Mitchell, S.H. 2010. Strain differences in behavioral inhibition in a Go/No‐go task demonstrated using 15 inbred mouse strains. Alcohol. Clin. Exp. Res. 34:1353‐1362.
  Hawasli, A.H., Benavides, D.R., Nguyen, C., Kansy, J.W., Hayashi, K., Chambon, P., Greengard, P., Powell, C.M., Cooper, D.C., and Bibb, J.A. 2007. Cyclin‐dependent kinase 5 governs learning and synaptic plasticity via control of NMDAR degradation. Nat. Neurosci. 10:880‐886.
  Hayden, B.Y. and Platt, M.L. 2007. Temporal discounting predicts risk sensitivity in rhesus macaques. Curr. Biol. 17:49‐53.
  Helms, C.M., Reeves, J.M., and Mitchell, S.H. 2006. Impact of strain and D‐amphetamine on impulsivity (delay discounting) in inbred mice. Psychopharmacology 188:144‐151.
  Helms, C.M., Gubner, N.R., Wilhelm, C.J., Mitchell, S.H., and Grandy, D.K. 2008. D4 receptor deficiency in mice has limited effects on impulsivity and novelty seeking. Pharmacol. Biochem. Behav. 90:387‐393.
  Humby, T. and Wilkinson, L.S. 2011. Assaying dissociable elements of behavioural inhibition and impulsivity: Translational utility of animal models. Curr. Opin. Pharmacol. 11:534‐539.
  Humby, T., Laird, F.M., Davies, W., and Wilkinson, L.S. 1999. Visuospatial attentional functioning in mice: Interactions between cholinergic manipulations and genotype. Eur. J. Neurosci. 11:2813‐2823.
  Humby, T., Wilkinson, L., and Dawson, G. 2005. Assaying aspects of attention and impulse control in mice using the 5‐choice serial reaction time task. Curr. Protoc. Neurosci. 31:8.5H.1‐8.5H.15.
  Humby, T., Eddy, J.B., Good, M.A., Reichelt, A.C., and Wilkinson, L.S. 2013. A novel translational assay of response inhibition and impulsivity: Effects of prefrontal cortex lesions, drugs used in ADHD, and serotonin 2C receptor antagonism. Neuropsychopharmacology 38:2150‐2159.
  Isles, A.R., Humby, T., and Wilkinson, L.S. 2003. Measuring impulsivity in mice using a novel operant delayed reinforcement task: Effects of behavioural manipulations and D‐amphetamine. Psychopharmacology 170:376‐382.
  Isles, A.R., Humby, T., Walters, E., and Wilkinson, L.S. 2004. Common genetic effects on variation in impulsivity and activity in mice. J. Neurosci. 24:6733‐6740.
  Isles, A.R., Hathway, G.J., Humby, T., de la Riva, C., Kendrick, K.M., and Wilkinson, L.S. 2005. An mTph2 SNP gives rise to alterations in extracellular 5‐HT levels, but not in performance on a delayed‐reinforcement task. Eur. J. Neurosci. 22:997‐1000.
  Kobayashi, Y., Sano, Y., Vannoni, E., Goto, H., Suzuki, H., Oba, A., Kawasaki, H., Kanba, S., Lipp, H.P., Murphy, N.P., Wolfer, D.P., and Itohara, S. 2013. Genetic dissection of medial habenula‐interpeduncular nucleus pathway function in mice. Front. Behav. Neurosci. 7:17.
  Lambourne, S.L., Humby, T., Isles, A.R., Emson, P.C., Spillantini, M.G., and Wilkinson, L.S. 2007. Impairments in impulse control in mice transgenic for the human FTDP‐17 tauV337M mutation are exacerbated by age. Hum. Mol. Genet. 16:1708‐1719.
  Laviola, G., Macri, S., Morley‐Fletcher, S., and Adriani, W. 2003. Risk‐taking behavior in adolescent mice: Psychobiological determinants and early epigenetic influence. Neurosci. Biobehav. Rev. 27:19‐31.
  Mar, A.C., Horner, A.E., Nilsson, S.R., Alsio, J., Kent, B.A., Kim, C.H., Holmes, A., Saksida, L.M., and Bussey, T.J. 2013. The touchscreen operant platform for assessing executive function in rats and mice. Nat. Protoc. 8:1985‐2005.
  Mazur, J.E. and Vaughan, W. Jr. 1987. Molar optimization versus delayed reinforcement as explanations of choice between fixed‐ratio and progressive‐ratio schedules. J. Exp. Anal. Behav. 48:251‐261.
  McDonald, M.P., Wong, R., Goldstein, G., Weintraub, B., Cheng, S.Y., Crawley, J.N. 1998. Hyperactivity and learning deficits in transgenic mice bearing a human mutant thyroid hormone beta1 receptor gene. Learn. Mem. 5:289‐301.
  Mobini, S., Body, S., Ho, M.Y., Bradshaw, C.M., Szabadi, E., Deakin, J.F., and Anderson, I.M. 2002. Effects of lesions of the orbitofrontal cortex on sensitivity to delayed and probabilistic reinforcement. Psychopharmacology 160:290‐298.
  Nestler, E.J. and Hyman, S.E. 2010. Animal models of neuropsychiatric disorders. Nat. Neurosci. 13:1161‐1169.
  Oberlin, B.G. and Grahame, N.J. 2009. High‐alcohol preferring mice are more impulsive than low‐alcohol preferring mice as measured in the delay discounting task. Alc. Clin. Exp. Res. 33:1294‐1303.
  Parker, C.C., Chen, H., Flagel, S.B., Geurts, A.M., Richards, J.B., Robinson, T.E., Solberg Woods, L.C., and Palmer, A.A. 2014. Rats are the smart choice: Rationale for a renewed focus on rats in behavioral genetics. Neuropharmacology 76B:250‐258.
  Patel, S., Stolerman, I.P., Asherson, P., and Sluyter, F. 2006. Attentional performance of C57BL/6 and DBA/2 mice in the 5‐choice serial reaction time task. Behav. Brain Res. 170:197‐203.
  Pena‐Oliver, Y., Buchman, V.L., Dalley, J.W., Robbins, T.W., Schumann, G., Ripley, T.L., King, S.L., and Stephens, D.N. 2012. Deletion of alpha‐synuclein decreases impulsivity in mice. Genes Brain Behav. 11:137‐146.
  Pinkston, J.W. and Lamb, R.J. 2011. Delay discounting in C57BL/6J and DBA/2J mice: Adolescent‐limited and life‐persistent patterns of impulsivity. Behav. Neurosci. 125:194‐201.
  Plagge, A., Isles, A.R., Gordon, E., Humby, T., Dean, W., Gritsch, S., Fischer‐Colbrie, R., Wilkinson, L.S., and Kelsey, G. 2005. Imprinted nesp55 influences behavioral reactivity to novel environments. Mol. Cell. Biol. 25:3019‐3026.
  Relkovic, D., Doe, C.M., Humby, T., Johnstone, K.A., Resnick, J.L., Holland, A.J., Hagan, J.J., Wilkinson, L.S., and Isles, A.R. 2010. Behavioural and cognitive abnormalities in an imprinting centre deletion mouse model for Prader‐Willi syndrome. Eur. J. Neurosci. 31:156‐164.
  Robbins, T.W. 2002. The 5‐choice serial reaction time task: Behavioural pharmacology and functional neurochemistry. Psychopharmacology 163:362‐380.
  Robbins, T.W., Gillan, C.M., Smith, D.G., de Wit, S., and Ersche, K.D. 2012. Neurocognitive endophenotypes of impulsivity and compulsivity: Towards dimensional psychiatry. Trends Cogn. Sci. 16:81‐91.
  Robinson, E.S., Eagle, D.M., Mar, A.C., Bari, A., Banerjee, G., Jiang, X., Dalley, J.W., and Robbins, T.W. 2008. Similar effects of the selective noradrenaline reuptake inhibitor atomoxetine on three distinct forms of impulsivity in the rat. Neuropsychopharmacology 33:1028‐1037.
  Rogers, D.C., Fisher, E.M., Brown, S.D., Peters, J., Hunter, A.J., and Martin, J.E. 1997. Behavioral and functional analysis of mouse phenotype: SHIRPA, a proposed protocol for comprehensive phenotype assessment. Mamm. Genome 8:711‐713.
  Schonberg, T., Fox, C.R., and Poldrack, R.A. 2011. Mind the gap: Bridging economic and naturalistic risk‐taking with cognitive neuroscience. Trends Cogn. Sci. 15:11‐19.
  Silva, A.J., Paylor, R., Wehner, J.M., and Tonegawa, S. 1992. Impaired spatial learning in alpha‐calcium‐calmodulin kinase II mutant mice. Science 257:206‐211.
  Sullivan, P.F., Daly, M.J., and O'Donovan, M. 2012. Genetic architectures of psychiatric disorders: The emerging picture and its implications. Nat. Rev. Genet. 13:537‐551.
  Swann, A.C. 2009. Impulsivity in mania. Curr. Psychiatry Rep. 11:481‐487.
  Swann, A.C., Lijffijt, M., Lane, S.D., Steinberg, J.L., and Moeller, F.G. 2009. Trait impulsivity and response inhibition in antisocial personality disorder. J. Psychiatr. Res. 43:1057‐1063.
  Talpos, J.C., Wilkinson, L.S., and Robbins, T.W. 2006. A comparison of multiple 5‐HT receptors in two tasks measuring impulsivity. J. Psychopharmacol. 20:47‐58.
  Wilhelm, C.J., Reeves, J.M., Phillips, T.J., and Mitchell, S.H. 2007. Mouse lines selected for alcohol consumption differ on certain measures of impulsivity. Alc. Clin. Exp. Res. 31:1839‐1845.
  Winstanley, C.A., Dalley, J.W., Theobald, D.E., and Robbins, T.W. 2004. Fractionating impulsivity: Contrasting effects of central 5‐HT depletion on different measures of impulsive behavior. Neuropsychopharmacology 29:1331‐1343.
  Winstanley, C.A., Eagle, D.M., and Robbins, T.W. 2006. Behavioral models of impulsivity in relation to ADHD: Translation between clinical and preclinical studies. Clin. Psychol. Rev. 26:379‐395.
PDF or HTML at Wiley Online Library