Mouse Models of Bone Healing: Fracture, Marrow Ablation, and Distraction Osteogenesis

Kyle Lybrand1, Beth Bragdon2, Louis Gerstenfeld2

1 Department of Orthopaedic Surgery, Boston Medical Center, Boston, Massachusetts, 2 Orthopaedic Research Laboratory, Boston University School of Medicine, Boston, Massachusetts
Publication Name:  Current Protocols in Mouse Biology
Unit Number:   
DOI:  10.1002/9780470942390.mo140161
Online Posting Date:  March, 2015
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Three commonly used murine surgical models of bone healing [closed fracture with intramedullary fixation, distraction osteogenesis (DO), and marrow ablation by reaming] are presented. Detailed surgical protocols for each model are outlined. The nature of the regenerative processes and the types of research questions that may be addressed with these models are briefly outlined. The relative strengths and weaknesses of these models are compared to a number of other surgical models that are used to address similar research questions. © 2015 by John Wiley & Sons, Inc.

Keywords: orthopedic surgery; murine models; fracture; distraction osteogenesis; reaming

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Fracture Protocol
  • Basic Protocol 2: The Distraction Osteogenesis Protocol
  • Basic Protocol 3: The Marrow Ablation Protocol
  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Fracture Protocol

  Materials
  • 10‐ to 18‐week‐old mice (individual mice used for a study should be within 2 weeks of each other in age)
  • Isoflurane for anesthesia
  • Oxygen (O 2)
  • Betadine (10% povidone‐iodine solution)
  • Bupenorphine (Buprenex) for post‐operative pain control
  • Enrofloxacin (Baytril; Bayer Animal Health), 2.27% for antibiotic prophylaxis
  • Germinator dry bead sterilizer for instrument sterilization between surgeries
  • Absorbent bench underpads (for surgical bed, recovery, and X‐ray station)
  • Heated pads for surgical bed and recovery
  • Non‐fenestrated sterile field drape
  • Animal scale
  • Small chamber for initial mouse anesthetization
  • Isoflurane vaporizer (for mouse anesthesia; Surgi Vet)
  • Nose cone
  • Electric razor for shaving mouse fur
  • Surgical gauze
  • #15 disposable scalpel blades and scalpel handle
  • Micro‐dissecting scissors (Castroviejo Micro Dissecting scissors)
  • Curved forceps (Dumont vessel cannulation forceps, Inox, 0.5 mm)
  • Tuberculin syringe with 27‐G, ½‐in. needle
  • Stainless steel 25‐G spinal needle stylet
  • Wire cutter
  • Needle driver
  • 5‐0 chromic gut suture
  • Small‐animal fracture device (Bonnarens and Einhorn, )
  • Small‐animal X‐ray imaging device

Basic Protocol 2: The Distraction Osteogenesis Protocol

  Materials
  • 10‐ to 18‐week‐old mice (individual mice used for a study should be within 2 weeks of each other in age)
  • Bupenorphine (Buprenex) for post‐op pain control
  • Enrofloxacin (Baytril, Bayer Animal Health), 2.27% for antibiotic prophylaxis
  • #15 disposable scalpel blades and scalpel handle
  • Micro‐dissecting scissors (Castroviejo Micro Dissecting scissors)
  • Small soft tissue elevator (2 Hourigan Modified Woodson Periosteal; Hu‐Friedy, http://www.hu‐friedy.com/)
  • 18‐G needle pre‐bent for inserting wire around the bone
  • Thin stainless steel wire (Standard Kobayashi Hooks 0.012 in.)
  • Distraction device (Track Distractor, 1.0 mm system, 6 mm distraction, KLS Martin, cat. no. 51‐525‐06‐09)
  • Distraction tool
  • Needle driver
  • Curved forceps (Dumont Vessel Cannulation Forceps, Inox, 0.5 mm)
  • Wire cutters
  • Foot‐powered circular saw and diamond disc
  • 5‐0 and 6‐0 absorbable chromic gut suture
  • Additional reagents and equipment for preparing and anesthetizing mouse ( protocol 1)

Basic Protocol 3: The Marrow Ablation Protocol

  Materials
  • 10‐ to 18‐week‐old mice (individual mice used for a study should be within 2 weeks of each other in age)
  • Sterile saline
  • Bupenorphine (Buprenex) for post‐operative pain control
  • #15 scalpel blade and scalpel handle
  • Curved forceps (Dumont Vessel Cannulation Forceps, Inox, 0.5 mm)
  • Tuberculin syringe with 27‐G, ½ in. needle
  • Stainless steel 25‐G and 23‐G spinal needles
  • 5‐0 absorbable chromic gut suture
  • Additional reagents and equipment for preparing and anesthetizing mouse ( protocol 1)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Al‐Aql, Z.S., Alagl, A.S., Graves, D.T., Gerstenfeld, L.C., and Einhorn, T.A. 2008. Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J. Dent. Res. 87:107‐118.
  Aronson, J. 1994. Experimental and clinical experience with distraction osteogenesis. Cleft. Palate Craniofac. J. 31:473‐482.
  Aronson, J., Good, B., Stewart, C., Harrison, B., and Harp, J. 1990. Preliminary studies of mineralization during distraction osteogenesis. Clin. Orthop. Relat. Res. 250:43‐49.
  Bais, M.V., Shabin, Z.M., Young, M., Einhorn, T.A., Kotton, D.N., and Gerstenfeld, L.C. 2012. Role of Nanog in the maintenance of marrow stromal stem cells during post natal bone regeneration. Biochem. Biophys. Res. Commun. 417:211‐216.
  Bais, M.V., Wigner, N., Young, M., Toholka, R., Graves, D.T., Morgan, E.F., Gerstenfeld, L.C., and Einhorn, T.A. 2009. BMP2 is essential for post natal osteogenesis but not for recruitment of osteogenic stem cells. Bone 45:254‐266.
  Bonnarens, F. and Einhorn, T. 1984. Production of a standard closed fracture in laboratory animal bone. J. Ortho. Res. 2:97‐101.
  Bragdon, B., Lybrand, K., and Gerstenfeld, L. 2015. Overview of biological mechanisms and applications of three murine models of bone repair: Closed fracture with intramedullary fixation, distraction osteogenesis, and marrow ablation by reaming. Curr. Protoc. Mouse Biol. 5:21-34.
  Carvalho, R.S., Einhorn, T.A., Lehmann, W., Edgar, C., Al‐Yamani, A., Apazidis, A., Pacicca, D., Clemens, T.L., and Gerstenfeld, L.C. 2004. The role of angiogenesis in a murine tibial model of distraction osteogenesis. Bone. 34:849‐861.
  Codivilla, A. 1905. On the means of lengthening in the lower limbs. Am. J. Orthop. Surg. 2:353‐369.
  Colnot, C., Thompson, Z., Miclau, T., Werb, Z., and Helms, J.A. 2003. Altered fracture repair in the absence of MMP9. Development. 130:4123‐4133.
  Gerstenfeld, L.C., Cho, T.J., Kon, T., Aizawa, T,, Cruceta, J., Graves, B.D., and Einhorn, T.A. 2001. Impaired intramembranous bone formation during bone repair in the absence of tumor necrosis factor‐alpha signaling. Cells Tissues Organs. 169:285‐294.
  Gerstenfeld, L.C., Al‐Ghawas, M., Alkhiary, Y.M., Cullinane, D.M., Krall, E.A., Fitch, J.L., Webb, E.G., Thiede, M.A., and Einhorn, T.A. 2007. Selective and nonselective cyclooxygenase‐2 inhibitors and experimental fracture‐healing: Reversibility of effects after short‐term treatment. J. Bone. Joint. Surg. Am. 89:114‐125.
  Gerstenfeld, L.C., Alkhiary, Y.M., Krall, E.A., Nicholls, F.H., Stapleton, S.N., Fitch, J.L., Bauer, M., Kayal, R., Graves, D.T., Jepsen, K.J., and Einhorn, T.A. 2006. Three dimensional reconstruction of fracture callus morphogenesis demonstrates asymmetry in callus development. J. Histochem. Cytochem. 54:1215‐1228.
  Grimes, R., Jepsen, K.J., Fitch, J.L., Einhorn, T.A., and Gerstenfeld, L.C. 2011. The transcriptome of fracture healing defines mechanisms of coordination of skeletal and vascular development during endochondral bone formation. J. Bone. Miner. Res. 26:2597‐2609.
  Hiltunen, A., Vuorio, E., and Aro, H. 1993. A standardized experimental fracture in the mouse tibia. J. Ortho. Res. 11:305‐312.
  Ilizarov, G.A. 1989. The tension‐stress effect on the genesis and growth of tissues. Part I. The influence of stability of fixation and soft‐tissue preservation. Clin. Orthop. Relat. Res. 238:249‐281.
  Jepsen, K.J., Price, C., Silkman, LJ., Nicholls, F.H., Nasser, P., Hu, B., Hadi, N., Alapatt, M., Stapleton, S.N., Kakar, S., Einhorn, T.A., and Gerstenfeld, L.C. 2008. Genetic variation in the patterns of skeletal progenitor cell differentiation and progression during endochondral bone formation affects the rate of fracture healing. J. Bone. Miner. Res. 23:1204‐1216.
  Kon, T., Cho, T.J., Aizawa, T. Yamazaki, M., Nooh, N., Graves, D., Gerstenfeld, L.C., and Einhorn, T.A. 2001. Expression of osteoprotegerin, receptor activator of NF‐kappaB ligand (osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing. J. Bone Miner Res. 16:1004‐1014.
  Lu, C., Saless, N., Hu, D., Wang, X., Xing, Z., Hou, H., Williams, B., Swartz, H.M., Colnot, C., Miclau, T., and Marcucio, R.S. 2011. Mechanical stability affects angiogenesis during early fracture healing. J. Orthop. Trauma. 25:494‐499.
  Marturano, J.E., Cleveland, B.C., Byrne, M.A., O'Connell, S.L., Wixted, J.J., and Billiar, K.L. 2008. An improved murine femur fracture device for bone healing studies. J. Biomech. 41:1222‐1228.
  Matsubara, H., Hogan, D.E., Morgan, E.F., Mortlock, D.P., Einhorn, T.A., and Gerstenfeld, L.C. 2012. Vascular tissues are a primary source of BMP2 expression during bone formation induced by distraction osteogenesis. Bone 51:168‐180.
  Matthys, R. and Perren, S.M. 2009. Internal fixator for use in the mouse. Injury 40:S103‐S109.
  Miclau, T., Lu, C., Thompson, Z., Choi, P., Puttlitz, C., Marcucio, R., and Helms, J.A. 2007. Effects of delayed stabilization on fracture healing. J. Orthop. Res. 25:1552‐1558.
  Morgan, E.F., Hussein, A.I., Al‐Awadhi, B.A., Hogan, D.E., Matsubara, H., Al‐Alq, Z., Fitch, J., Andre, B., Hosur, K., and Gerstenfeld, L.C. 2012. Vascular development during distraction osteogenesis proceeds by sequential intramuscular arteriogenesis followed by intraosteal angiogenesis. Bone 51:535‐545.
  Salisbury‐Palomares, K.T., Gleason, R.E., Mason, Z.D., Cullinane, D.M., Einhorn, T.A., Gerstenfeld, L.C., and Morgan, E.F. 2009. Mechanical stimulation alters tissue differentiation and molecular expression during bone healing. J. Orthop. Res. 27:1123‐1132.
  Sato, M., Yasui, N., Nakase, T., Kawahata, H., Sugimoto, M., Hirota, S., Kitamura, Y., Nomura, S., and Ochi, T. 1998. Expression of bone matrix proteins mRNA during distraction osteogenesis. J. Bone Miner Res. 13:1221‐1231.
  Simon, A.M., Manigrasso, M.B., and O'Connor, J.P. 2002. Cyclo‐oxygenase 2 function is essential for bone fracture healing. J. Bone Miner Res. 17:963‐976.
  Suva, L.J, Seedor, J.G., Endo, N., Quartuccio, H.A., Thompson, D.D., Bab, I., and Rodan, G.A. 1993. Pattern of gene expression following rat tibial marrow ablation. J. Bone Miner Res. 8:379‐388.
  Tay, B.K., Le, A.X., Gould, S.E., and Helms, J.A. 1998. Histochemical and molecular analyses of distraction osteogenesis in a mouse model. J. Orthop. Res. 16:636‐642.
  Tsuji, K., Bandyopadhyay, A., Harfe, B.D., Cox, K., Kakar, S., Gerstenfeld, L., Einhorn, T., Tabin, C.J., and Rosen, V. 2006. BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat. Genet. 38:1424‐1429.
  Vauhkonen, M., Peltonen, J., Karaharju, E., Aalto, K., and Alitalo, I. 1990. Collagen synthesis and mineralization in the early phase of distraction bone healing. Bone Miner. 10:171‐181.
  Wigner, N.A., Luderer, H.F., Cox, M.K., Sooy, K., Gerstenfeld, L.C., and Demay, M.B. 2010. Acute phosphate restriction leads to impaired fracture healing and resistance to BMP‐2. J. Bone Miner. Res. 25:724‐733.
  Yu, Y.Y., Bahney, C, Hu, D., Marcucio, R.S., and Miclau, T. 2012. Creating rigidly stabilized fractures for assessing intramembranous ossification, distraction osteogenesis, or healing of critical sized defects. J. Vis. Exp. 11:62.
  Zhang, X., Schwarz, E.M., Young, D.A., Puzas, J.E., Rosier, R.N., and O'Keefe, R.J. 2002. Cyclooxygenase‐2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair. J. Clin. Invest. 109:1405‐1415.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library