Overview of Biological Mechanisms and Applications of Three Murine Models of Bone Repair: Closed Fracture with Intramedullary Fixation, Distraction Osteogenesis, and Marrow Ablation by Reaming

Beth Bragdon1, Kyle Lybrand1, Louis Gerstenfeld1

1 Department of Orthopaedic Surgery, Boston University Medical Center, Boston, Massachusetts
Publication Name:  Current Protocols in Mouse Biology
Unit Number:   
DOI:  10.1002/9780470942390.mo140166
Online Posting Date:  March, 2015
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Fractures are one of the most common large‐organ, traumatic injuries in humans, and osteoporosis‐related fractures are the fastest growing health care problem of aging. Elective orthopedic surgeries of the bones and joints also represent some of most common forms of elective surgeries performed. Optimal repair of skeletal tissues is necessary for successful outcomes of these many different orthopedic surgical treatments. Research focused on post‐natal skeletal repair is therefore of immense clinical importance and of particular relevance in situations in which bone tissue healing is compromised due to the extent of tissue trauma or specific medical co‐morbidities. Three commonly used murine surgical models of bone healing, closed fracture with intramedullary fixation, distraction osteogenesis (DO), and marrow ablation by reaming, are presented. The biological aspects of these models are contrasted and the types of research questions that may be addressed with these models are presented. © 2015 by John Wiley & Sons, Inc.

Keywords: distraction osteogenesis; fracture; marrow ablation; murine models; orthopedic surgery

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Fracture
  • Inflammatory Phase
  • Cartilage Formation Phase
  • Cartilage Resorption and Primary Bone Formation Phase
  • Second Resorptive Phase
  • Role of Angiogenesis During Fracture Repair
  • Distraction Osteogenesis
  • Latency
  • Active Distraction
  • Consolidation
  • Angiogenesis
  • Marrow Ablation
  • Phases of Marrow Ablation
  • Differences Between the Three Surgical Models
  • Conclusions
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
  Abou‐Khalil, R. and Colnot, C. 2014. Cellular and molecular bases of skeletal regeneration: What can we learn from genetic mouse models? Bone 64:211‐221.
  Ai‐Aql, Z.S., Alagl, A.S., Graves, D.T., Gerstenfeld, L.C., and Einhorn, T.A. 2008. Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J. Dent. Res. 87:107‐118.
  Aronson, J. 1994. Experimental and clinical experience with distraction osteogenesis. Cleft Palate Craniofac. J. 31:473‐482.
  Aronson, J., Good, B., Stewart, C., Harrison, B., and Harp, J. 1990. Preliminary studies of mineralization during distraction osteogenesis. Clin. Orthop. Relat. Res. 250:43‐49.
  Balogh, Z.J., Reumann, M.K., Gruen, R.L., Mayer‐Kuckuk, P., Schuetz, M.A., Harris, I.A., Gabbe, B.J., and Bhandari, M. 2012. Advances and future directions for management of trauma patients with musculoskeletal injuries. Lancet 380:1109‐1119.
  Barnes, G.L., Kostenuik, P.J., Gerstenfeld, L.C., and Einhorn, T.A. 1999. Growth factor regulation of fracture repair. J. Bone Miner. Res. 14:1805‐1815.
  Behonick, D.J., Xing, Z., Lieu, S., Buckley, J.M., Lotz, J.C., Marcucio, R.S., Werb, Z., Miclau, T., and Colnot, C. 2007. Role of matrix metalloproteinase 13 in both endochondral and intramembranous ossification during skeletal regeneration. PLoS One 2:e1150.
  Carvalho, R., Einhorn, T., Lehmann, W., Edgar, C., Al‐Yamani, A., Apazidis, A., Pacicca, D., Clemens, T., and Gerstenfeld, L. 2004. The role of angiogenesis in a murine tibial model of distraction osteogenesis. Bone 34:849‐861.
  Cho, T., Kim, J., Chung, C., Yoo, W., Gerstenfeld, L., Einhorn, T., and Choi, I. 2007. Expression and role of interleukin‐6 in distraction osteogenesis. Calcif. Tissue Int. 80:192‐200.
  Choi, I.H., Chung, C.Y., Cho, T.J., and Yoo, W.J. 2002. Angiogenesis and mineralization during distraction osteogenesis. J. Korean Med. Sci. 17:435‐447.
  Claes, L., Eckert‐Hübner, K., and Augat, P. 2002. The effect of mechanical stability on local vascularization and tissue differentiation in callus healing. J. Orthop. Res. 20:1099‐1105.
  Codivilla, A. 1905. On the means of lengthening, in the lower limbs, the muscles and tissues which are shortened through deformity. J. Bone Joint. Sur. Am. 2:353‐369.
  Colnot, C. 2009. Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. J. Bone Miner. Res. 24:274‐282.
  Colnot, C., Huang, S., and Helms, J. 2006. Analyzing the cellular contribution of bone marrow to fracture healing using bone marrow transplantation in mice. Biochem. Biophys. Res. Commun. 350:557‐561.
  Colnot, C., Zhang, X., and Tate, M.L.K. 2012. Current insights on the regenerative potential of the periosteum: Molecular, cellular, and endogenous engineering approaches. J. Orthop. Res. 30:1869‐1878.
  Colnot, C., Thompson, Z., Miclau, T., Werb, Z., and Helms, J.A. 2003. Altered fracture repair in the absence of MMP9. Development (Cambridge, Eng) 130:4123‐4133.
  Deckers, M.M., van Bezooijen, R.L., van der Horst, G., Hoogendam, J., van der Bent, C., Papapoulos, S.E., and Löwik, C.W. 2002. Bone morphogenetic proteins stimulate angiogenesis through osteoblast‐derived vascular endothelial growth factor A. Endocrinology 143:1545‐1553.
  Dimitriou, R., Tsiridis, E., and Giannoudis, P.V. 2005. Current concepts of molecular aspects of bone healing. Injury 36:1392‐1404.
  Dishowitz, M.I., Mutyaba, P.L., Takacs, J.D., Barr, A.M., Engiles, J.B., Ahn, J., and Hankenson, K.D. 2013. Systemic inhibition of canonical Notch signaling results in sustained callus inflammation and alters multiple phases of fracture healing. PLoS One 8:e68726.
  Fang, T.D., Salim, A., Xia, W., Nacamuli, R.P., Guccione, S., Song, H.M., Carano, R.A., Filvaroff, E.H., Bednarski, M.D., and Giaccia, A.J. 2005. Angiogenesis is required for successful bone induction during distraction osteogenesis. J. Bone Miner. Res. 20:1114‐1124.
  Farhadieh, R.D., Gianoutsos, M.P., Yu, Y., and Walsh, W.R. 2004. The role of bone morphogenetic proteins BMP‐2 and BMP‐4 and their related postreceptor signaling system (Smads) in distraction osteogenesis of the mandible. J. Craniofac. Surg. 15:714‐718.
  Farnum, C.E., Lee, A.O., O'Hara, K., and Wilsman, N.J. 2003. Effect of short‐term fasting on bone elongation rates: An analysis of catch‐up growth in young male rats. Pediatr. Res. 53:33‐41.
  Ferguson, C., Alpern, E., Miclau, T., and Helms, J.A. 1999. Does adult fracture repair recapitulate embryonic skeletal formation? Mech. Dev. 87:57‐66.
  Galis, Z.S., Johnson, C., Godin, D., Magid, R., Shipley, J.M., Senior, R.M., and Ivan, E. 2002. Targeted disruption of the matrix metalloproteinase‐9 gene impairs smooth muscle cell migration and geometrical arterial remodeling. Cir. Res. 91:852‐859.
  Gerber, H., Vu, T.H., Ryan, A.M., Kowalski, J., Werb, Z., and Ferrara, N. 1999. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat. Med. 5:623‐628.
  Gerstenfeld, L.C., Cullinane, D.M., Barnes, G.L., Graves, D.T., and Einhorn, T.A. 2003. Fracture healing as a post‐natal developmental process: Molecular, spatial, and temporal aspects of its regulation. J. Cell. Biochem. 88:873‐884.
  Gerstenfeld, L.C., Cho, T.J., Kon, T., Aizawa, T., Cruceta, J., Graves, B.D., and Einhorn, T.A. 2001. Impaired intramembranous bone formation during bone repair in the absence of tumor necrosis factor‐alpha signaling. Cells Tissues Organs 169:285‐294.
  Gerstenfeld, L.C., Sacks, D.J., Pelis, M., Mason, Z.D., Graves, D.T., Barrero, M., Ominsky, M.S., Kostenuik, P.J., Morgan, E.F., and Einhorn, T.A. 2009. Comparison of effects of the bisphosphonate alendronate versus the RANKL inhibitor denosumab on murine fracture healing. J. Bone Miner. Res. 24:196‐208.
  Gerstenfeld, L.C., Alkhiary, Y.M., Krall, E.A., Nicholls, F.H., Stapleton, S.N., Fitch, J.L., Bauer, M., Kayal, R., Graves, D.T., Jepsen, K.J., and Einhorn, T.A. 2006. Three‐dimensional reconstruction of fracture callus morphogenesis. J. Histochem. Cytochem. 54:1215‐1228.
  Grcevic, D., Pejda, S., Matthews, B.G., Repic, D., Wang, L., Li, H., Kronenberg, M.S., Jiang, X., Maye, P., and Adams, D.J. 2012. In vivo fate mapping identifies mesenchymal progenitor cells. Stem Cells 30:187‐196.
  Hankenson, K., Zimmerman, G., and Marcucio, R. 2014. Biological perspectives of delayed fracture healing. Injury 45:S8‐S15.
  Hausman, M., Schaffler, M., and Majeska, R. 2001. Prevention of fracture healing in rats by an inhibitor of angiogenesis. Bone 29:560‐564.
  Hayward, L.N., de Bakker, C.M., Gerstenfeld, L.C., Grinstaff, M.W., and Morgan, E.F. 2013. Assessment of contrast‐enhanced computed tomography for imaging of cartilage during fracture healing. J. Orthop. Res. 31:567‐573.
  Holmbeck, K., Bianco, P., Caterina, J., Yamada, S., Kromer, M., Kuznetsov, S.A., Mankani, M., Gehron Robey, P., Poole, A.R., and Pidoux, I. 1999. MT1‐MMP‐deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 99:81‐92.
  Ilizarov, G.A. 1989. The tension‐stress effect on the genesis and growth of tissues: Part I. The influence of stability of fixation and soft‐tissue preservation. Clin. Orthop. Relat. Res. 238:249‐281.
  Jacobsen, K.A., Al‐Aql, Z.S., Wan, C., Fitch, J.L., Stapleton, S.N., Mason, Z.D., Cole, R.M., Gilbert, S.R., Clemens, T.L., and Morgan, E.F. 2008. Bone formation during distraction osteogenesis is dependent on both VEGFR1 and VEGFR2 signaling. J. Bone Miner. Res. 23:596‐609.
  Jazrawi, L.M., Majeska, R.J., Klein, M.L., Kagel, E., Stromberg, L., and Einhorn, T.A. 1998. Bone and cartilage formation in an experimental model of distraction osteogenesis. J. Orthop. Trauma 12:111‐116.
  Kayal, R.A., Tsatsas, D., Bauer, M.A., Allen, B., Al‐Sebaei, M.O., Kakar, S., Leone, C.W., Morgan, E.F., Gerstenfeld, L.C., and Einhorn, T.A. 2007. Diminished bone formation during diabetic fracture healing is related to the premature resorption of cartilage associated with increased osteoclast activity. J. Bone Miner. Res. 22:560‐568.
  Keramaris, N., Calori, G., Nikolaou, V., Schemitsch, E., and Giannoudis, P. 2008. Fracture vascularity and bone healing: A systematic review of the role of VEGF. Injury 39:S45‐S57.
  Kon, T., Cho, T., Aizawa, T., Yamazaki, M., Nooh, N., Graves, D., Gerstenfeld, L.C., and Einhorn, T.A. 2001. Expression of osteoprotegerin, receptor activator of NF‐κB ligand (Osteoprotegerin Ligand) and related proinflammatory cytokines during fracture healing. J. Bone Miner. Res. 16:1004‐1014.
  Kosaki, N., Takaishi, H., Kamekura, S., Kimura, T., Okada, Y., Minqi, L., Amizuka, N., Chung, U., Nakamura, K., and Kawaguchi, H. 2007. Impaired bone fracture healing in matrix metalloproteinase‐13 deficient mice. Biochem. Biophys. Res. Commun. 354:846‐851.
  Kuhn, J.L., Delacey, J.H., and Leenellett, E.E. 1996. Relationship between bone growth rate and hypertrophic chondrocyte volume in New Zealand white rabbits of varying ages. J. Orthop. Res. 14:706‐711.
  Kumagai, K., Vasanji, A., Drazba, J.A., Butler, R.S., and Muschler, G.F. 2008. Circulating cells with osteogenic potential are physiologically mobilized into the fracture healing site in the parabiotic mice model. J. Orthop. Res. 26:165‐175.
  Kuroda, S., Virdi, A.S., Dai, Y., Shott, S., and Sumner, D.R. 2005. Patterns and localization of gene expression during intramembranous bone regeneration in the rat femoral marrow ablation model. Calcif. Tissue Int. 77:212‐225.
  Lammens, J., Liu, Z., Aerssens, J., Dequeker, J., and Fabry, G. 1998. Distraction bone healing versus osteotomy healing: A comparative biochemical analysis. J. Bone Miner. Res. 13:279‐286.
  Lehmann, W., Edgar, C., Wang, K., Cho, T., Barnes, G., Kakar, S., Graves, D., Rueger, J., Gerstenfeld, L., and Einhorn, T. 2005. Tumor necrosis factor alpha (TNF‐α) coordinately regulates the expression of specific matrix metalloproteinases (MMPS) and angiogenic factors during fracture healing. Bone 36:300‐310.
  Li, G., Berven, S., Simpson, H., and Triffitt, J.T. 1998. Expression of BMP‐4 mRNA during distraction osteogenesis in rabbits. Acta Orthop. 69:420‐425.
  Liu, Z., Luyten, F., Lammens, J., and Dequeker, J. 1999. Molecular signaling in bone fracture healing and distraction osteogenesis. Histol. Histopathol. 14:587‐595.
  Lu, C., Miclau, T., Hu, D., and Marcucio, R.S. 2007. Ischemia leads to delayed union during fracture healing: A mouse model. J. Orthop. Res. 25:51‐61.
  Lu, C., Miclau, T., Hu, D., Hansen, E., Tsui, K., Puttlitz, C., and Marcucio, R.S. 2005. Cellular basis for age‐related changes in fracture repair. J. Orthop. Res. 23:1300‐1307.
  Lybrand, K., Bragdon, B., and Gerstenfeld, L. 2015. Mouse models of bone healing: Fracture, marrow ablation, and distraction osteogenesis. Curr. Protoc. Mouse Biol. 5:35‐49.
  Marchant, M.H. Jr., Viens, N.A., Cook, C., Vail, T.P., and Bolognesi, M.P. 2009. The impact of glycemic control and diabetes mellitus on perioperative outcomes after total joint arthroplasty. J. Bone Joint. Sur. Am. 91:1621‐1629.
  Marsell, R. and Einhorn, T.A. 2011. The biology of fracture healing. Injury 42:551‐555.
  Marsell, R., Steen, B., Bais, M.V., Mortlock, D.P., Einhorn, T.A., and Gerstenfeld, L.C. 2014. Skeletal trauma generates systemic BMP2 activation that is temporally related to the mobilization of CD73 cells. J. Orthop. Res. 32:17‐23.
  Marukawa, K., Ueki, K., Alam, S., Shimada, M., Nakagawa, K., and Yamamoto, E. 2006. Expression of bone morphogenetic protein‐2 and proliferating cell nuclear antigen during distraction osteogenesis in the mandible in rabbits. Br. J. Oral. Maxillofac. Surg. 44:141‐145.
  Matsubara, H., Hogan, D.E., Morgan, E.F., Mortlock, D.P., Einhorn, T.A., and Gerstenfeld, L.C. 2012. Vascular tissues are a primary source of BMP2 expression during bone formation induced by distraction osteogenesis. Bone 51:168‐180.
  Matthews, B.G., Grcevic, D., Wang, L., Hagiwara, Y., Roguljic, H., Joshi, P., Shin, D., Adams, D.J., and Kalajzic, I. 2014. Analysis of αSMA‐labeled progenitor cell commitment identifies Notch signaling as an important pathway in fracture healing. J. Bone Miner. Res. 29:1283‐1294.
  McBride, S.H., McKenzie, J.A., Bedrick, B.S., Kuhlmann, P., Pasteris, J.D., Rosen, V., and Silva, M.J. 2014. Long Bone Structure and strength depend on BMP2 from osteoblasts and osteocytes, but not vascular endothelial cells. PLoS One 9:e96862.
  McDonald, M.M., Dulai, S., Godfrey, C., Amanat, N., Sztynda, T., and Little, D.G. 2008. Bolus or weekly zoledronic acid administration does not delay endochondral fracture repair but weekly dosing enhances delays in hard callus remodeling. Bone 43:653‐662.
  McDonald, M.M., Morse, A., Mikulec, K., Peacock, L., Baldock, P.A., Kostenuik, P.J., and Little, D.G. 2013. Matrix metalloproteinase‐driven endochondral fracture union proceeds independently of osteoclast activity. J. Bone Miner. Res. 28:1550‐1560.
  Morgan, E.F., Mason, Z.D., Chien, K.B., Pfeiffer, A.J., Barnes, G.L., Einhorn, T.A., and Gerstenfeld, L.C. 2009. Micro‐computed tomography assessment of fracture healing: Relationships among callus structure, composition, and mechanical function. Bone 44:335‐344.
  Morgan, E.F., Hussein, A.I., Al‐Awadhi, B.A., Hogan, D.E., Matsubara, H., Al‐Alq, Z., Fitch, J., Andre, B., Hosur, K., and Gerstenfeld, L.C. 2012. Vascular development during distraction osteogenesis proceeds by sequential intramuscular arteriogenesis followed by intraosteal angiogenesis. Bone 51:535‐545.
  Mountziaris, P.M. and Mikos, A.G. 2008. Modulation of the inflammatory response for enhanced bone tissue regeneration. Tissue Eng. Part B Rev. 14:179‐186.
  Nishisho, T., Yukata, K., Matsui, Y., Matsuura, T., Higashino, K., Suganuma, K., Nikawa, T., and Yasui, N. 2012. Angiogenesis and myogenesis in mouse tibialis anterior muscles during distraction osteogenesis: VEGF, its receptors, and myogenin genes expression. J. Orthop. Res. 30:1767‐1773.
  Okuda, N., Takeda, S., Shinomiya, K., Muneta, T., Itoh, S., Noda, M., and Asou, Y. 2007. ED‐71, a novel vitamin D analog, promotes bone formation and angiogenesis and inhibits bone resorption after bone marrow ablation. Bone 40:281‐292.
  Ortega, N., Wang, K., Ferrara, N., Werb, Z., and Vu, T.H. 2010. Complementary interplay between matrix metalloproteinase‐9, vascular endothelial growth factor and osteoclast function drives endochondral bone formation. Dis. Model. Mech. 3:224‐235.
  Pacicca, D., Patel, N., Lee, C., Salisbury, K., Lehmann, W., Carvalho, R., Gerstenfeld, L., and Einhorn, T. 2003. Expression of angiogenic factors during distraction osteogenesis. Bone 33:889‐898.
  Phillips, A. 2005. Overview of the fracture healing cascade. Injury 36:S5‐S7.
  Praemer, A., Furner, S., and Rice, D.P. 1999. Musculoskeletal Conditions in the United States, 2nd Edition. American Academy of Orthopaedic Surgeons, Rosemont, Ill.
  Pritchett, J.W. 1992. Longitudinal growth and growth‐plate activity in the lower extremity. Clin. Orthop. Relat. Res. 275:274‐279.
  Rahn, B.A. 1982. Bone healing: Histologic and physiologic concepts. In Bone in Clinical Orthopaedics, 1st Edition (G. Sumner‐Smith, ed.) pp. 335‐386. WB Saunders, Philadelphia.
  Raines, A.L., Sunwoo, M., Gertzman, A.A., Thacker, K., Guldberg, R.E., Schwartz, Z., and Boyan, B.D. 2011. Hyaluronic acid stimulates neovascularization during the regeneration of bone marrow after ablation. J. Biomed. Mater. Res. A 96:575‐583.
  Rauch, F., Lauzier, D., Croteau, S., Travers, R., Glorieux, F., and Hamdy, R. 2000. Temporal and spatial expression of bone morphogenetic protein‐2, ‐4, and ‐7 during distraction osteogenesis in rabbits. Bone 26:611‐617.
  Sato, M., Ochi, T., Nakase, T., Hirota, S., Kitamura, Y., Nomura, S., and Yasui, N. 1999. Mechanical tension‐stress induces expression of bone morphogenetic protein (BMP)‐2 and BMP‐4, but not BMP‐6, BMP‐7, and GDF‐5 mRNA, during distraction osteogenesis. J. Bone Miner. Res. 14:1084‐1095.
  Sato, M., Yasui, N., Nakase, T., Kawahata, H., Sugimoto, M., Hirota, S., Kitamura, Y., Nomura, S., and Ochi, T. 1998. Expression of bone matrix proteins mRNA during distraction osteogenesis. J. Bone Miner. Res. 13:1221‐1231.
  Schindeler, A., McDonald, M.M., Bokko, P., and Little, D.G. 2008. Bone remodeling during fracture repair: The cellular picture. Semin. Cell Dev. Biol. 19:459‐466.
  Street, J., Bao, M., deGuzman, L., Bunting, S., Peale, F.V. Jr., Ferrara, N., Steinmetz, H., Hoeffel, J., Cleland, J.L., Daugherty, A., van Bruggen, N., Redmond, H.P., Carano, R.A., and Filvaroff, E.H. 2002. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc. Natl. Acad. Sci. U.S.A. 99:9656‐9661.
  Suri, C., Jones, P.F., Patan, S., Bartunkova, S., Maisonpierre, P.C., Davis, S., Sato, T.N., and Yancopoulos, G.D. 1996. Requisite role of angiopoietin‐1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87:1171‐1180.
  Suva, L.J., Seedor, G.J., Endo, N., Quartuccio, H.A., Thompson, D.D., Bab, I., and Rodan, G.A. 1993. Pattern of gene expression following rat tibial marrow ablation. J. Bone Miner. Res. 8:379‐388.
  Vauhkonen, M., Peltonen, J., Karaharju, E., Aalto, K., and Alitalo, I. 1990. Collagen synthesis and mineralization in the early phase of distraction bone healing. Bone Miner. 10:171‐181.
  Vu, T.H., Shipley, J.M., Bergers, G., Berger, J.E., Helms, J.A., Hanahan, D., Shapiro, S.D., Senior, R.M., and Werb, Z. 1998. MMP‐9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93:411‐422.
  Wigner, N.A., Soung, D.Y., Einhorn, T.A., Drissi, H., and Gerstenfeld, L.C. 2013. Functional role of Runx3 in the regulation of aggrecan expression during cartilage development. J. Cell. Physiol. 228:2232‐2242.
  Wise, J.K., Sena, K., Vranizan, K., Pollock, J.F., Healy, K.E., Hughes, W.F., Sumner, D.R., and Virdi, A.S. 2010. Temporal gene expression profiling during rat femoral marrow ablation‐induced intramembranous bone regeneration. PLoS One 5:e12987.
  Xing, Z., Lu, C., Hu, D., Miclau, T., and Marcucio, R.S. 2010. Rejuvenation of the inflammatory system stimulates fracture repair in aged mice. J. Orthop. Res. 28:1000‐1006.
  Yasui, N., Sato, M., Ochi, T., Kimura, T., Kawahata, H., Kitamura, Y., and Nomura, S. 1997. Three modes of ossification during distraction osteogenesis in the rat. J. Bone Joint Surg. Am. 79:824‐830.
  Yazawa, M., Kishi, K., Nakajima, H., and Nakajima, T. 2003. Expression of bone morphogenetic proteins during mandibular distraction osteogenesis in rabbits. J. Oral Maxillofac. Surg. 61:587‐592.
  Yeh, L.C. and Lee, J.C. 1999. Osteogenic protein‐1 increases gene expression of vascular endothelial growth factor in primary cultures of fetal rat calvaria cells. Mol. Cell. Endocrinol. 153:113‐124.
  Yonezawa, H., Harada, K., Ikebe, T., Shinohara, M., and Enomoto, S. 2006. Effect of recombinant human bone morphogenetic protein‐2 (rhBMP‐2) on bone consolidation on distraction osteogenesis: A preliminary study in rabbit mandibles. J. Cranio. Maxill. Surg. 34:270‐276.
PDF or HTML at Wiley Online Library