Mouse Models for Studying Diabetic Nephropathy

Bryna S.M. Chow1, Terri J. Allen1

1 Diabetic Complications Group, Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria
Publication Name:  Current Protocols in Mouse Biology
Unit Number:   
DOI:  10.1002/9780470942390.mo140192
Online Posting Date:  June, 2015
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Diabetic nephropathy (DN) is a term used to describe kidney damage cause by diabetes. With DN as one of the leading causes of end‐stage renal disease worldwide, there is a strong need for appropriate animal models to study DN pathogenesis and develop therapeutic strategies. To date, most experiments are carried out in mouse models as opposed to other species for several reasons including lower cost, ease of handling, and easy manipulation of the mouse genome to generate transgenic and knockout animals. This unit provides detailed insights and technical knowledge in setting up one of the most widely used models of DN, the streptozotocin (STZ)‐induced model. This model has been extensively exploited to study the mechanism of diabetic renal injury. The advantages and limitations of the STZ model and the availability of other genetic models of DN are also discussed. © 2015 by John Wiley & Sons, Inc.

Keywords: diabetic nephropathy; mouse; streptozotocin; Akita

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Streptozotocin Induced Model of Diabetic Nephropathy
  • Support Protocol 1: Periodic Acid Schiff (PAS) Staining
  • Support Protocol 2: RNA Extraction from Kidney Portions
  • Support Protocol 3: cDNA Synthesis
  • Reagents and Solutions
  • Commentary
  • Literature Cited
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Streptozotocin Induced Model of Diabetic Nephropathy

  Materials
  • Mice (∼6 to 7 weeks; age‐ and sex‐matched; C57BL6/J strain; Jackson Lab)
  • Streptozotocin (STZ; e.g., Sigma‐Aldrich)
  • Sodium citrate buffer (pH 4.5; see recipe)
  • 0.9% (w/v) sterile saline (Sigma‐Aldrich)
  • Euthal (pentobarbital; e.g., Virbac)
  • 10% (v/v) neutral‐buffered formalin (e.g., Sigma)
  • Paraffin
  • Aluminum foil
  • 1‐ml disposable plastic syringes
  • 29‐G injection needles
  • Blood glucometer and test strips (e.g., Abbott Laboratories)
  • Metabolic cages (MMC100, Hatteras Instruments)
  • ELISA kit (e.g., Bethyl Laboratories)
  • Enzymatic creatinine test (e.g., CREA plus, Roche Diagnostics)
  • Plastic embedding cassettes and molds (e.g., Hurst Scientific)
  • Microtome (e.g., Leica)
  • Glass slides
  • Additional materials for injection of mice (Donovan and Brown, ), blood collection (Donovan and Brown, ), and euthanasia (Donovan and Brown, ).

Support Protocol 1: Periodic Acid Schiff (PAS) Staining

  Additional Materials (also see protocol 1Basic Protocol)
  • Tissue sections ( protocol 1Basic Protocol, step 13)
  • Xylene
  • Ethanol
  • 1% (w/v) periodic acid (e.g., Sigma‐Aldrich)
  • Schiff's reagent (e.g., Sigma‐Aldrich)
  • Mayer's hematoxylin (e.g., Millipore)
  • Scott's tap water (e.g., Sigma‐Aldrich)
  • DPX mountant (e.g., Sigma‐Aldrich)
  • Coverslips

Support Protocol 2: RNA Extraction from Kidney Portions

  Additional Materials (also see protocol 1Basic Protocol)
  • Mouse kidney tissue ( protocol 1Basic Protocol, step 14)
  • TRIzol (Life Technologies)
  • Chloroform
  • Isoamyl alcohol
  • Isopropanol
  • Ethanol
  • Ultrapure DNase/RNase‐free water (e.g., Life Technologies)
  • Spectrophotometer (e.g. NanoDrop, Thermo Scientific)

Support Protocol 3: cDNA Synthesis

  Additional Materials (also see protocol 1Basic Protocol)
  • Pure RNA (ratio of absorbance at 260 nm/280 nm = ∼0.2)
  • DNase 10× buffer (e.g., Life Technologies)
  • DNA‐free DNase enzyme (e.g., Life Technologies)
  • Ultrapure DNase/RNAase free water (e.g., Life Technologies)
  • DNase inactivation reagent (e.g., Life Technologies)
  • Random hexamers (50 ng/μl; e.g., Life Technologies)
  • Reaction solution (see recipe)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Alpers, C.E. and Hudkins, K.L. 2011. Mouse models of diabetic nephropathy. Curr. Opin. Nephrol. Hypertension 20:278‐284.
  Breyer, M.D., Bottinger, E., Brosius, F.C. 3rd, Coffman, T.M., Harris, R.C., Heilig, C.W., Sharma, K., and AMDCC. 2005. Mouse models of diabetic nephropathy. J. Am. Soc. Nephrol. 16:27‐45.
  Brosius, F.C., Alpers, C.E., Bottinger, E.P., Breyer, M.D., Coffman, T.M., Gurley, S.B., Harris, R.C., Kakoki, M., Kretzler, M., Leiter, E.H., Levi, M., McIndoe, R.A., Sharma, K., Smithies, O., Susztak, K., Takahashi, N., Takahashi, T., and Animal Models of Diabetic Complications Consortium. 2009. Mouse models of diabetic nephropathy. J. Am. Soc. Nephrol. 20:2503‐2512.
  Chang, J.H. and Gurley, S.B. 2012. Assessment of diabetic nephropathy in the Akita mouse. Methods Mol. Biol. 933:17‐29.
  Donovan, J. and Brown, P. 2006a. Parenteral injections. Curr. Protoc. Immunol. 73:1.6.1‐1.6.10.
  Donovan, J. and Brown, P. 2006b. Blood collection. Curr. Protoc. Immunol. 73:1.7.1‐1.7.9.
  Donovan, J. and Brown, P. 2006c. Euthanasia. Curr. Protoc. Immunol. 73:1.8.1‐1.8.4.
  Driver, J.P., Serreze, D.V., and Chen, Y.G. 2011. Mouse models for the study of autoimmune type 1 diabetes: A NOD to similarities and differences to human disease. Sem. Immunopathol. 33:67‐87.
  Gurley, S.B., Clare, S.E., Snow, K.P., Hu, A., Meyer, T.W., and Coffman, T.M. 2006. Impact of genetic background on nephropathy in diabetic mice. Am. J. Physiol. Renal Physiol. 290:F214‐F222.
  Gurley, S.B., Mach, C.L., Stegbauer, J., Yang, J., Snow, K.P., Hu, A., Meyer, T.W., and Coffman, T.M. 2010. Influence of genetic background on albuminuria and kidney injury in Ins2(+/C96Y) (Akita) mice. Am. J. Physiol. Renal Physiol. 298:F788‐F795.
  Hall‐Craggs, M., Brenner, D.E., Vigorito, R.D., and Sutherland, J.C. 1982. Acute renal failure and renal tubular squamous metaplasia following treatment with streptozotocin. Hum. Pathol. 13:597‐601.
  Itagaki, S., Nishida, E., Lee, M.J., and Doi, K. 1995. Histopathology of subacute renal lesions in mice induced by streptozotocin. Exp. Toxicol. Pathol. 47:485‐491.
  Kong, L.L., Wu, H., Cui, W.P., Zhou, W.H., Luo, P., Sun, J., Yuan, H., and Miao, L.N. 2013. Advances in murine models of diabetic nephropathy. J. Diabetes Res. 2013:797548.
  Kraynak, A.R., Storer, R.D., Jensen, R.D., Kloss, M.W., Soper, K.A., Clair, J.H., DeLuca, J.G., Nichols, W.W., and Eydelloth, R.S. 1995. Extent and persistence of streptozotocin‐induced DNA damage and cell proliferation in rat kidney as determined by in vivo alkaline elution and BrdUrd labeling assays. Toxicol. Appl. Pharmacol. 135:279‐286.
  Leiter, E.H. 1982. Multiple low‐dose streptozotocin‐induced hyperglycemia and insulitis in C57BL mice: Influence of inbred background, sex, and thymus. Proc. Natl. Acad. Sci. U.S.A. 79:630‐634.
  Lenzen, S. 2008. The mechanisms of alloxan‐ and streptozotocin‐induced diabetes. Diabetologia 51:216‐226.
  Like, A.A. and Rossini, A.A. 1976. Streptozotocin‐induced pancreatic insulitis: New model of diabetes mellitus. Science 193:415‐417.
  Like, A.A., Appel, M.C., Williams, R.M., and Rossini, A.A. 1978. Streptozotocin‐induced pancreatic insulitis in mice. Morphologic and physiologic studies. Lab. Invest. 38:470‐486.
  Mathews, C.E. 2005. Utility of murine models for the study of spontaneous autoimmune type 1 diabetes. Pediatr. Diabetes 6:165‐177.
  Paik, S.G., Michelis, M.A., Kim, Y.T., and Shin, S. 1982. Induction of insulin‐dependent diabetes by streptozotocin. Inhibition by estrogens and potentiation by androgens. Diabetes 31:724‐729.
  Rees, D.A. and Alcolado, J.C. 2005. Animal models of diabetes mellitus. Diabetic Med. 22:359‐370.
  Ron, D. 2002. Proteotoxicity in the endoplasmic reticulum: Lessons from the Akita diabetic mouse. J. Clin. Invest. 109:443‐445.
  Rossini, A.A., Appel, M.C., Williams, R.M., and Like, A.A. 1977. Genetic influence of the streptozotocin‐induced insulitis and hyperglycemia. Diabetes 26:916‐920.
  Rossini, A.A., Williams, R.M., Appel, M.C., and Like, A.A. 1978. Sex differences in the multiple‐dose streptozotocin model of diabetes. Endocrinology 103:1518‐1520.
  Schena, F.P. and Gesualdo, L. 2005. Pathogenetic mechanisms of diabetic nephropathy. J. Am. Soc. Nephrol. 16:S30‐S33.
  Tay, Y.C., Wang, Y., Kairaitis, L., Rangan, G.K., Zhang, C., and Harris, D.C. 2005. Can murine diabetic nephropathy be separated from superimposed acute renal failure? Kidney Int. 68:391‐398.
  Tesch, G.H. and Allen, T.J. 2007. Rodent models of streptozotocin‐induced diabetic nephropathy. Nephrology 12:261‐266.
  Wicker, L.S., Chamberlain, G., Hunter, K., Rainbow, D., Howlett, S., Tiffen, P., Clark, J., Gonzalez‐Munoz, A., Cumiskey, A.M., Rosa, R.L., Howson, J.M., Smink, L.J., Kingsnorth, A., Lyons, P.A., Gregory, S., Rogers, J., Todd, J.A., and Peterson, L.B. 2004. Fine mapping, gene content, comparative sequencing, and expression analyses support Ctla4 and Nramp1 as candidates for Idd5.1 and Idd5.2 in the nonobese diabetic mouse. J. Immunol. 173:164‐173.
  Wolf, J., Lilly, F., and Shin, S.I. 1984. The influence of genetic background on the susceptibility of inbred mice to streptozotocin‐induced diabetes. Diabetes 33:567‐571.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library