Exploration of Energy Metabolism in the Mouse Using Indirect Calorimetry: Measurement of Daily Energy Expenditure (DEE) and Basal Metabolic Rate (BMR)

Carola W. Meyer1, Peter Reitmeir2, Matthias H. Tschöp3

1 Institute for Diabetes and Obesity, Helmholtz‐Zentrum München GmbH, Neuherberg, 2 Institute for Health Economics and Health Care Management, Helmholtz‐Zentrum München GmbH, Neuherberg, 3 Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich
Publication Name:  Current Protocols in Mouse Biology
Unit Number:   
DOI:  10.1002/9780470942390.mo140216
Online Posting Date:  September, 2015
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Current comprehensive mouse metabolic phenotyping involves studying energy balance in cohorts of mice via indirect calorimetry, which determines heat release from changes in respiratory air composition. Here, we describe the measurement of daily energy expenditure (DEE) and basal metabolic rate (BMR) in mice. These well‐defined metabolic descriptors serve as meaningful first‐line read‐outs for metabolic phenotyping and should be reported when exploring energy expenditure in mice. For further guidance, the issue of appropriate sample sizes and the frequency of sampling of metabolic measurements is also discussed. © 2015 by John Wiley & Sons, Inc.

Keywords: daily energy expenditure; indirect calorimetry; mouse phenotyping; basal metabolic rate

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Measurement of Mouse Daily Energy Expenditure (DEE)
  • Basic Protocol 2: Measurement of Mouse Basal Metabolic Rate (BMR)
  • Support Protocol 1: Preparing the Calorimetry System
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Measurement of Mouse Daily Energy Expenditure (DEE)

  Materials
  • Appropriate mouse strain or line
  • Mouse diet
  • Calorimetry setup [e.g., Columbus Instruments (http://www.colinst.com), Sable Systems (http://sablesys.com), TSE‐Systems (http://www.tse‐systems.com)] including the following components (also see protocol 3Support Protocol):
    • live‐in cage(s) with lid
    • mass flow meter(s)
    • dehumidifying unit(s)
    • gas analyzer(s)
    • pump(s)
    • computer and recording software
    • multiplexer/magnetic valves (optional)
  • Bedding material
  • Feeder, water bottles
  • Scale (±0.1 g for mice, ±0.01 g for food/water)
  • Transparent mouse house or mouse shelter
  • Temperature‐controlled room or cabinet

Basic Protocol 2: Measurement of Mouse Basal Metabolic Rate (BMR)

  Materials
  • Appropriate mouse strain or line
  • Calorimetry setup [e.g., Columbus Instruments (http://www.colinst.com), Sable Systems (http://sablesys.com), TSE‐Systems (http://www.tse‐systems.com)] including the following components (also see protocol 3Support Protocol):
    • live‐in cage(s) with lid
    • mass flow meter(s)
    • dehumidifying unit(s)
    • gas analyzer(s)
    • pump(s)
    • computer and recording software
    • multiplexer/magnetic valves (optional)
  • Bedding material
  • Water bottles
  • Scale (±0.1 g for mice, ±0.01 g for food/water)
  • Transparent mouse house or mouse shelter
  • Temperature‐controlled room or cabinet
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Abreu‐Vieira, G., Xiao, C., Gavrilova, O., and Reitman, M.L. 2015. Integration of body temperature into the analysis of energy expenditure in the mouse. Mol. Metab. 4:461‐470.
  Arch, J.R., Hislop, D., Wang, S.J., and Speakman, J.R. 2006. Some mathematical and technical issues in the measurement and interpretation of open‐circuit indirect calorimetry in small animals. Int. J. Obes. 30:1322‐1331. doi: 10.1038/sj.ijo.0803280.
  Aschoff, J. and Pohl, H. 1970. Rhythmic variations in energy metabolism. Fed. Proc. 29:1541‐1552.
  Blaxter, K.L. 1978. Adair Crawford and calorimetry. Proc. Nutr. Soc. 37:1‐3. doi: 10.1079/PNS19780002.
  Bruss, M.D., Khambatta, C.F., Ruby, M.A., Aggarwal, I., and Hellerstein, M.K. 2010. Calorie restriction increases fatty acid synthesis and whole body fat oxidation rates. Am. J. Physiol. Endocrinol. Metab. 298:E108‐E116. doi: 10.1152/ajpendo.00524.2009.
  Burger, M. and van Breukelen, F. 2013. Construction of a low cost and highly sensitive direct heat calorimeter suitable for estimating metabolic rate in small animals. J. Thermal. Biol. 38:508‐512. doi: 10.1016/j.jtherbio.2013.09.002.
  Burnett, C.M. and Grobe, J.L. 2013. Direct calorimetry identifies deficiencies in respirometry for the determination of resting metabolic rate in C57Bl/6 and FVB mice. Am. J. Physiol. Endocrinol. Metab. 305:E916‐E924. doi: 10.1152/ajpendo.00387.2013.
  Burnett, C.M. and Grobe, J.L. 2014. Dietary effects on resting metabolic rate in C57BL/6 mice are differentially detected by indirect (O2/CO2 respirometry) and direct calorimetry. Mol. Metab. 3:460‐464. doi: 10.1016/j.molmet.2014.03.003.
  Butler, A.A. and Kozak, L.P. 2010. A recurring problem with the analysis of energy expenditure in genetic models expressing lean and obese phenotypes. Diabetes 59:323‐329. doi: 10.2337/db09‐1471.
  Cannon, B. and Nedergaard, J. 2011. Nonshivering thermogenesis and its adequate measurement in metabolic studies. J. Exp. Biol. 214:242‐253. doi: 10.1242/jeb.050989.
  Cooper, C.E. and Withers, P.C. 2010. Effect of sampling regime on estimation of basal metabolic rate and standard evaporative water loss using flow‐through respirometry. Physiol. Biochem. Zool. 83:385‐393. doi: 10.1086/605612.
  Crawford, A. 1788. Experiments and observations on animal heat, and the inflammation of combustible bodies. Kessinger Publishing (2010).
  Dell, R.B., Holleran, S., and Ramakrishnan, R. 2002. Sample size determination. ILAR J. 43:207‐213. doi: 10.1093/ilar.43.4.207.
  Even, P.C. and Nadkarni, N.A. 2012. Indirect calorimetry in laboratory mice and rats: Principles, practical considerations, interpretation and perspectives. Am. J. Physiol. Regul. Integr. Comp. Physiol. 303:R459‐R476. doi: 10.1152/ajpregu.00137.2012.
  Even, P.C., Mokhtarian, A., and Pele, A. 1994. Practical aspects of indirect calorimetry in laboratory animals. Neurosci. Biobehav. Rev. 18:435‐447. doi: 10.1016/0149‐7634(94)90056‐6.
  Even, P.C., Perrier, E., Aucouturier, J.L., and Nicolaidis, S. 1991. Utilisation of the method of Kalman filtering for performing the on‐line computation of background metabolism in the free‐moving, free‐feeding rat. Physiol. Behav. 49:177‐187. doi: 10.1016/0031‐9384(91)90252‐J.
  Frankenfield, D.C. 2010. On heat, respiration, and calorimetry. Nutrition 26:939‐950. doi: 10.1016/j.nut.2010.01.002.
  Golozoubova, V., Gullberg, H., Matthias, A., Cannon, B., Vennstrom, B., and Nedergaard, J. 2004. Depressed thermogenesis but competent brown adipose tissue recruitment in mice devoid of all hormone‐binding thyroid hormone receptors. Mol. Endocrinol. 18:384‐401. doi: 10.1210/me.2003‐0267.
  Grimpo, K., Volker, M.N., Heppe, E.N., Braun, S., Heverhagen, J.T., and Heldmaier, G. 2014. Brown adipose tissue dynamics in wild‐type and UCP1‐knockout mice: In vivo insights with magnetic resonance. J. Lipid. Res. 55:398‐409. doi: 10.1194/jlr.M042895.
  Guo, J. and Hall, K.D. 2011. Challenges of indirect calorimetry in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 300:R780; author reply R781‐R782.
  Hart, J.S. 1971. Rodents. In Comparative Physiology of Thermoregulation, vol. 2 (G.C. Whittow, ed.) pp. 1‐149. Academic Press, New York, London.
  Heldmaier, G. 1975. Metabolic and thermoregulatory responses to heat and cold in the Djungarian hamster, Phodopus sungorus. J. Comp. Physiol. 102:115‐122. doi: 10.1007/BF00691297.
  Himms‐Hagen, J. 1997. On raising energy expenditure in ob/ob mice. Science 276:1132‐1133. doi: 10.1126/science.276.5315.1132.
  Hulbert, A.J. and Else, P.L. 2000. Mechanisms underlying the cost of living in animals. Annu. Rev. Physiol. 62:207‐35:207‐235. doi: 10.1146/annurev.physiol.62.1.207.
  Humphries, M.M. and Careau, V. 2011. Heat for nothing or activity for free? Evidence and implications of activity‐thermoregulatory heat substitution. Integr. Comp. Biol. 51:419‐431. doi: 10.1093/icb/icr059.
  Kaiyala, K.J. 2014. What does indirect calorimetry really tell us? Mol. Metab. 3:340‐341. doi: 10.1016/j.molmet.2014.03.005.
  Kaiyala, K.J. and Ramsay, D.S. 2011. Direct animal calorimetry, the underused gold standard for quantifying the fire of life. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 158:252‐264. doi: 10.1016/j.cbpa.2010.04.013.
  Kaiyala, K.J., Morton, G.J., Leroux, B.G., Ogimoto, K., Wisse, B., and Schwartz, M.W. 2010. Identification of body fat mass as a major determinant of metabolic rate in mice. Diabetes 59:1657‐1666. doi: 10.2337/db09‐1582.
  Klaus, S., Munzberg, H., Truloff, C., and Heldmaier, G. 1998. Physiology of transgenic mice with brown fat ablation: Obesity is due to lowered body temperature. Am. J. Physiol. 274:R287‐R293.
  Kleiber, M. 1961. The Fire of Life. John Wiley and Sons, New York.
  Ksiazek, A., Konarzewski, M., and Lapo, I.B. 2004. Anatomic and energetic correlates of divergent selection for basal metabolic rate in laboratory mice. Physiol. Biochem. Zool. 77:890‐899. doi: 10.1086/425190.
  Lighton, J.R. and Halsey, L.G. 2011. Flow‐through respirometry applied to chamber systems: Pros and cons, hints and tips. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 158:265‐275. doi: 10.1016/j.cbpa.2010.11.026.
  Longo, K.A., Charoenthongtrakul, S., Giuliana, D.J., Govek, E.K., McDonagh, T., Distefano, P.S., and Geddes, B.J. 2010. The 24‐hour respiratory quotient predicts energy intake and changes in body mass. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298:R747‐R754. doi: 10.1152/ajpregu.00476.2009.
  Lusk, G. 1928. The Elements of the Science of Nutrition. Sanders, Philadelphia, Pa.
  Marcaletti, S., Thomas, G., and Feige, J.N. 2011. Exercise performance tests in mice. Curr. Protoc. Mouse Biol. 1:141‐154.
  Meyer, C.W., Klingenspor, M., Rozman, J., and Heldmaier, G. 2004. Gene or size: Metabolic rate and body temperature in obese growth hormone‐deficient dwarf mice. Obes. Res. 12:1509‐1518. doi: 10.1038/oby.2004.188.
  Meyer, C.W., Wagener, A., Rink, N., Hantschel, C., Heldmaier, G., Klingenspor, M., and Brockmann, G.A. 2009. High energy digestion efficiency and altered lipid metabolism contribute to obesity in BFMI mice. Obesity 17:1988‐1993. doi: 10.1038/oby.2009.124.
  Meyer, C.W., Willershauser, M., Jastroch, M., Rourke, B.C., Fromme, T., Oelkrug, R., Heldmaier, G., and Klingenspor, M. 2010. Adaptive thermogenesis and thermal conductance in wild‐type and UCP1‐KO mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299:R1396‐R1406. doi: 10.1152/ajpregu.00021.2009.
  Ravussin, E., Lillioja, S., Anderson, T.E., Christin, L., and Bogardus, C. 1986. Determinants of 24‐hour energy expenditure in man. Methods and results using a respiratory chamber. J. Clin. Invest. 78:1568‐1578. doi: 10.1172/JCI112749.
  Rozman, J., Klingenspor, M., and Hrabe de Angelis, M. 2014. A review of standardized metabolic phenotyping of animal models. Mamm. Genome 25:497‐507. doi: 10.1007/s00335‐014‐9532‐0.
  Schmidt‐Nielsen, K. 1997. Animal Physiology: Adaptation and Environment, 5th edition. Cambridge University Press, Cambridge.
  Secor, S.M. 2009. Specific dynamic action: A review of the postprandial metabolic response. J. Comp. Physiol. B 179:1‐56. doi: 10.1007/s00360‐008‐0283‐7.
  Speakman, J.R. 2013. Measuring energy metabolism in the mouse: Theoretical, practical, and analytical considerations. Front. Physiol. 4:34.
  Speakman, J.R. 2014. Should we abandon indirect calorimetry as a tool to diagnose energy expenditure? Not yet. Perhaps not ever. Commentary on Burnett and Grobe (2014). Mol. Metab. 3:342‐344. doi: 10.1016/j.molmet.2014.04.003.
  Speakman, J.R. and Keijer, J. 2012. Not so hot: Optimal housing temperatures for mice to mimic the thermal environment of humans. Mol. Metab. 2:5‐9. doi: 10.1016/j.molmet.2012.10.002.
  Speakman, J.R., Krol, E., and Johnson, M.S. 2004. The functional significance of individual variation in basal metabolic rate. Physiol. Biochem. Zool. 77:900‐915. doi: 10.1086/427059.
  Speakman, J.R., Fletcher, Q., and Vaanholt, L. 2013. The ‘39 steps': An algorithm for performing statistical analysis of data on energy intake and expenditure. Dis. Model Mech. 6:293‐301. doi: 10.1242/dmm.009860.
  Swallow, J.G., Garland, T., Jr., Carter, P.A., Zhan, W.Z., and Sieck, G.C. 1998. Effects of voluntary activity and genetic selection on aerobic capacity in house mice (Mus domesticus). J. Appl. Physiol. (1985) 84:69‐76.
  Tøien, Ø. 2013. Automated open flow respirometry in continuous and long‐term measurements: Design and principles. J. Appl. Physiol. 114:1094‐1107. doi: 10.1152/japplphysiol.01494.2012.
  Tschöp, M.H., Speakman, J.R., Arch, J.R., Auwerx, J., Bruning, J.C., Chan, L., Eckel, R.H., Farese, R.V., Jr., Galgani, J.E., Hambly, C., Herman, M.A., Horvath, T.L., Kahn, B.B., Kozma, S.C., Maratos‐Flier, E., Muller, T.D., Munzberg, H., Pfluger, P.T., Plum, L., Reitman, M.L., Rahmouni, K., Shulman, G.I., Thomas, G., Kahn, C.R., and Ravussin, E. 2012. A guide to analysis of mouse energy metabolism. Nat. Methods 9:57‐63. doi: 10.1038/nmeth.1806.
  Van Klinken, J.B., van den Berg, S.A., and van Dijk, K.W. 2013. Practical aspects of estimating energy components in rodents. Front. Physiol. 4:94.
  Van Klinken, J.B., van den Berg, S.A., Havekes, L.M., and Willems Van Dijk, K. 2012. Estimation of activity related energy expenditure and resting metabolic rate in freely moving mice from indirect calorimetry data. PLoS One 7:e36162.
  Virtue, S., Even, P., and Vidal‐Puig, A. 2012. Below thermoneutrality, changes in activity do not drive changes in total daily energy expenditure between groups of mice. Cell Metab. 16:665‐671. doi: 10.1016/j.cmet.2012.10.008.
  Walsberg, G.E. and Hoffman, T.C. 2005. Direct calorimetry reveals large errors in respirometric estimates of energy expenditure. J. Exp. Biol. 208:1035‐1043. doi: 10.1242/jeb.01477.
  Webb, G.P., Jagot, S.A., and Jakobson, M.E. 1982. Fasting‐induced torpor in Mus musculus and its implications in the use of murine models for human obesity. Comp. Biochem. Physiol. 72:211‐219. doi: 10.1016/0300‐9629(82)90035‐4.
  Weir, J.B. 1949. New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. 109:1‐9. doi: 10.1113/jphysiol.1949.sp004363.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library