Development of a Representative Mouse Model with Nonalcoholic Steatohepatitis

Jef Verbeek1, Ans Jacobs2, Pieter Spincemaille3, David Cassiman4

1 Division of Gastroenterology and Hepatology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands, 2 Department of Hepatology, University Hospitals KU Leuven, Leuven, Belgium, 3 Department of Laboratory Medicine, University Hospitals KU Leuven, Leuven, Belgium, 4 Metabolic Center, University Hospitals KU Leuven, Leuven, Belgium
Publication Name:  Current Protocols in Mouse Biology
Unit Number:   
DOI:  10.1002/cpmo.1
Online Posting Date:  June, 2016
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Non‐alcoholic fatty liver disease (NAFLD) is the most prevalent liver disease in the Western world. It represents a disease spectrum ranging from isolated steatosis to non‐alcoholic steatohepatitis (NASH). In particular, NASH can evolve to fibrosis, cirrhosis, hepatocellular carcinoma, and liver failure. The development of novel treatment strategies is hampered by the lack of representative NASH mouse models. Here, we describe a NASH mouse model, which is based on feeding non–genetically manipulated C57BL6/J mice a ‘Western style’ high‐fat/high‐sucrose diet (HF‐HSD). HF‐HSD leads to early obesity, insulin resistance, and hypercholesterolemia. After 12 weeks of HF‐HSD, all mice exhibit the complete spectrum of features of NASH, including steatosis, hepatocyte ballooning, and lobular inflammation, together with fibrosis in the majority of mice. Hence, this model closely mimics the human disease. Implementation of this mouse model will lead to a standardized setup for the evaluation of (i) underlying mechanisms that contribute to the progression of NAFLD to NASH, and (ii) therapeutic interventions for NASH. © 2016 by John Wiley & Sons, Inc.

Keywords: fibrosis; fructose; mouse model; NAFLD; NASH; sucrose

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Induction of NASH In C57BL/6J Mice and In Vivo Phenotyping
  • Basic Protocol 2: Sacrifice, Sample Collection, and Analyses of Collected Tissues
  • Commentary
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


Basic Protocol 1: Induction of NASH In C57BL/6J Mice and In Vivo Phenotyping

  • 6‐week‐old male C57BL/6J mice (The Jackson Laboratory)
  • HF‐HSD with 44.6% of kcal derived from fat (of which 61% are saturated fatty acids) and 40.6% of kcal derived from carbohydrates (primarily sucrose 340 g/kg diet) (45% kcal Fat Diet; Harlan Laboratories Inc., cat. no. TD.08811; store up to 6 months at 4°C)
  • A regular NCD (ssniff R/M‐H; ssniff Spezialdiäten GmbH, cat. no. V1534‐000 ) as control
  • Glucose dissolved in normal saline 0.9 % NaCl
  • Standard housing cages
  • Balance
  • Scalpel
  • Bayer Contour glucometer and glucose test strips
  • Gastric gavage needles
  • 1‐ml syringes
  • PIXImus densitometer (Lunar Corp.) or EchoMRI (EchoMRI LLC)
  • Additional reagents and equipment for intraperitoneal injection of mice (Donovan and Brown, )

Basic Protocol 2: Sacrifice, Sample Collection, and Analyses of Collected Tissues

  • Mice from NASH‐induction experiment ( protocol 1)
  • Nembutal (Ceva) diluted to 5 mg/ml in normal saline (0.9% NaCl in distilled water)
  • Liquid nitrogen
  • Tissue‐Tek (Sakura Finetek, Inc.)
  • 2‐methylbutane (Sigma‐Aldrich)
  • Mouse Insulin ELISA Kit (Crystal Chem. Inc.)
  • Bayer Contour glucometer and glucose test strips
  • Dissecting board
  • Balance
  • Scissors
  • Tweezers
  • Marked microcentrifuge tubes
  • Heparinized 1 ml syringe prepared by flushing with Heparin LEO (LEO Pharma A/S)
  • Tissue‐Tek disposable vinyl specimen cryomolds (Sakura Finetek, Inc.)
  • Additional reagents and equipment for intraperitoneal injection of mice (Donovan and Brown, ), blood collection by cardiac puncture (Donovan and Brown, ), and fixation and paraffin embedding of tissues (Zeller, ), H&E staining (Mangiavini et al., ), and Oil Red O and picrosirius red staining (Mark et al., )
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
  Abdelmalek, M., Suzuki, A., Guy, C., Analp‐Arida, A., Colvin, R., Johnson, R.J., and Diehl, A.M. 2010. Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology 51:1961‐1971. doi: 10.1002/hep.23535.
  Andrikopoulos, S., Blair, A., Deluca, N., Fam, B.C., and Proietto, J. 2008. Evaluating the glucose tolerance test in mice. Am. J. Physiol. Endocrinol. Metab. 295:E1323‐E1332. doi: 10.1152/ajpendo.90617.2008.
  Anstee, Q.M. 2011. Animal models in nonalcoholic steatohepatitis research: Utility and clinical translation. Liver Int. 31:440‐442. doi: 10.1111/j.1478‐3231.2011.02463.x.
  Ayala, J., Samuel, V., Morton, G., Obici, S., Croniger, C.M., Shulman, G.I., Wasserman, D.H., and McGuinness, O.P. 2010. Standard operating procedures for describing and performing metabolic test of glucose homeostasis in mice. Dis. Model Mech. 3:525‐534. doi: 10.1242/dmm.006239.
  Bedogni, G., Miglioli, L., Masutti, F., Tiribelli, C., Marchesini, G., and Belletani, S. 2005. Prevalence of and risk factors for nonalcoholic fatty liver disease: The Dionysos nutrition and liver study. Hepatology 42:44‐52. doi: 10.1002/hep.20734.
  Bedossa, P., Dargère, D., and Paradis, V. 2003. Sampling variability of liver fibrosis in chronic hepatitis C. Hepatology 38:1449‐1457. doi: 10.1016/j.hep.2003.09.022.
  Blachier, M., Leleu, H., Peck‐Radosavljevic, M., Valla, D.C., and Roudot‐Thoraval, F. 2013. The burden of liver disease in Europe: A review of available epidemiological data. J. Hepatol. 58:593‐608. doi: 10.1016/j.jhep.2012.12.005.
  Cassiman, D. and Jaeken, J. 2008. NASH may be trash. Gut 57:141‐144. doi: 10.1136/gut.2007.123240.
  Charlton, M.R., Burns, J.M., Pedersen, R.A., Watt, K.D., Heimbach, J.K., and Dierkhising, R.A. 2011a. Frequency and outcomes of liver transplantation for nonalcoholic steatohepatitis in the United States. Gastroenterology 141:1249‐1253. doi: 10.1053/j.gastro.2011.06.061.
  Charlton, M., Krishnan, A., Viker, K., Sanderson, S., Cazanave S., McConico, A., Masuoko, H., and Gores, G. 2011b. Fast food diet mouse: Novel small animal model of NASH with ballooning, progressive fibrosis, and high physiological fidelity to the human condition. Am. J. Physiol. Gastrointest. Liver Physiol. 301:G825‐34. doi: 10.1152/ajpgi.00145.2011.
  Donovan, J. and Brown, P. 2006a. Parenteral injections. Curr. Protoc. Immunol. 73:1.6.1‐1.6.10. doi: 10.1002/0471142735.im0106s73.
  Donovan, J. and Brown, P. 2006b. Blood collection. Curr. Protoc. Immunol. 73:1.7.1‐1.7.9. doi: 10.1002/0471142735.im0107s73.
  Hebbard, L. and George, J. 2011. Animal models of nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 8:35‐44. doi: 10.1038/nrgastro.2010.191.
  Heijboer, A., Donga, E., Voshol, P., Dang, Z.C., Havekes, L.M., Romijn, J.A., and Corssmit, E.P. 2005. Sixteen hours of fasting differentially affects hepatic and muscle insulin sensitivity in mice. J. Lipid Res. 46:582‐588. doi: 10.1194/jlr.M400440‐JLR200.
  Ishimoto, T., Lanaspa, M.A., Rivard, C.J., Roncal‐Jimenez, C.A., Orlicky, D.J., Cicerchi, C., McMahan, R.H., Abdelmalek, M.F., Rosen, H.R., Jackman, M.R., MacLean, P.S., Diggle, C.P., Asipu, A., Inaba, S., Kosugi, T., Sato, W., Maruyama, S., Sanchez‐Lozada, L.G., Sautin, Y.Y., Hill, J.O., Bonthron, D.T., and Johnson, R.J. 2013. High fat and high sucrose (western) diet induce steatohepatitis that is dependent on fructokinase. Hepatology 58:1632–1643. doi: 10.1002/hep.26594.
  Kleiner, D.E., Brunt, E.M., Van Natta, M., Behling, C., Contos, M.J., Cummings, O.W., Ferrell, L.D., Liu, Y.C., Torbenson, M.S., Unalp‐Arida, A., Yeh, M., McCullough, A.J., and Sanyal, A.J. 2005. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41:1313‐1321. doi: 10.1002/hep.20701.
  Kohli, R., Kirby, M., Xanthakos, S.A., Softic, S., Feldstein, A.E., Saxena, V., Tang, P.H., Miles, L., Mile, M.V., Balistreri, W.F., Woods, S.C., and Reeley, R.J. 2010. High‐fructose, medium chain trans fat diet induces liver fibrosis and elevates plasma coenzyme Q9 in a novel murine model of obesity and nonalcoholic steatohepatitis. Hepatology 52:934‐944. doi: 10.1002/hep.23797.
  Lassailly, G., Caïazzo, R., Pattou, F., and Mathurin, P. 2013. Bariatric surgery for curing NASH in the morbidly obese? J. Hepatol. 58:1249‐1251. doi: 10.1016/j.jhep.2012.12.026.
  Lassailly, G., Caiazzo, R., Buob, D., Pigeyre, M., Verkindt, H., Labreuche, J., Raverdy, V., Leteurtre, E., Dharancy, S., Louvet A., Romon, M., Duhamel, A., Pattou, F., and Mathurin, P. 2015. Bariatric surgery reduces features of non‐alcoholic steatohepatitis in morbidly obese patients. Gastroenterology 149:379‐388. doi: 10.1053/j.gastro.2015.04.014.
  Lim, J., Mietus‐Snyder, M., Valente, A., Schwarz, J.M., and Lustig, R.H. 2010. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat. Rev. Gastroenterol. Hepatol. 7:251‐264. doi: 10.1038/nrgastro.2010.41.
  Mangiavini, L., Merceron, C., and Schipani, E. 2016. Analysis of mouse growth plate development. Curr. Protoc. Mouse Biol. 6:67‐130. doi: 10.1002/9780470942390.mo150094
  Marchesini, G., Bugianesi, E., Forlani, G., Cerrelli, F., Lenzi, M., Manini, R., Natale, S., Vanni En Villanova, N., Melchionda, N., and Rizzetto, M. 2003. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 37:917‐923. doi: 10.1053/jhep.2003.50161.
  Mark, M., Teletin, M., Antal, C., Wendling, O., Auwerx, J., Heikkinen, S., Khetchoumian, K., Argmann, C.A. and Dgheem, M. 2007. Histopathology in mouse metabolic investigations. Curr. Protoc. Mol. Biol. 78:29B.4.1‐29B.4.32.
  Matthews, D.R., Hosker, J.P., Rudenski, A.S., Naylor, B.A., Treacher, D.F., and Turner, R.C. 1985. Homeostasis model assessment: Insulin resistance and beta‐cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412‐419. doi: 10.1007/BF00280883.
  Ouyang, X., Cirillo, P., Sautin, Y., McCall, S., Bruchette, J.L., Diehl, A.M., Johson, R.J., and Abdelmalek, M.F. 2008. Fructose consumption as a risk factor for non‐alcoholic fatty liver disease. J. Hepatol. 48:993‐999. doi: 10.1016/j.jhep.2008.02.011.
  Ratziu, V. 2013. Pharmacological agents for NASH. Nat. Rev. Gastroenterol. Hepatol. 10:676‐685. doi: 10.1038/nrgastro.2013.193.
  Sanyal, A.J., Brunt, E.M., Kleiner, D.E., Kowdley, K.V., Chalasani, N., Lavine, J.E., Ratziu, V., and McCullough, A. 2011. Endpoints and clinical trial design for nonalcoholic steatohepatitis. Hepatology 54:344‐353. doi: 10.1002/hep.24376.
  Verbeek, J., Cassiman, D., Lannoo, M., Laleman, W., van der Merwe, S., Verslype, C., Van Steenbergen, W., and Nevens, F. 2013. Treatment of non‐alcoholic fatty liver disease: Can we already face the epidemic? Acta Gastroenterol. Belg. 76:200‐209.
  Verbeek, J., Lannoo, M., Pirinen, E., Ryu, D., Spincemaille, P., Vander Elst, I., Windmolders, P., Thevissen, K., Cammue, B.P., van Pelt, J., Fransis, S., Van Eyken, P., Ceuterick‐De Groote, C., Van Veldhoven, P.P., Bedossa, P., Nevens, F., Auwerx, J., and Cassiman, D. 2015. Roux‐en‐y gastric bypass attenuates hepatic mitochondrial dysfunction in mice with non‐alcoholic steatohepatitis. Gut 64:673‐683. doi: 10.1136/gutjnl‐2014‐306748.
  Zeller, R. 1989. Fixation, embedding, and sectioning of tissues, embryos, and single cells. Curr. Protoc. Mol. Biol. 7:14.1.1‐14.1.8. doi: 10.1002/0471142727.mb0101s07.
PDF or HTML at Wiley Online Library