Overview of Innovative Mouse Models for Imaging Neuroinflammation

Céline Caravagna1, Alexandre Jaouën1, Franck Debarbieux2, Geneviève Rougon2

1 Aix Marseille Université, Centre Européen de Recherche en Imagerie Médicale, Marseille, 2 These authors contributed equally to this work
Publication Name:  Current Protocols in Mouse Biology
Unit Number:   
DOI:  10.1002/cpmo.5
Online Posting Date:  June, 2016
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Neuroinflammation demands a comprehensive appraisal in situ to gain in‐depth knowledge on the roles of particular cells and molecules and their potential roles in therapy. Because of the lack of appropriate tools, direct visualization of cells has been poorly investigated up to the present. In this context, reporter mice expressing cell‐specific fluorescent proteins, combined with multiphoton microscopy, provide a window into cellular processes in living animals. In addition, the ability to collect multiple fluorescent colors from the same sample makes in vivo microscopy uniquely useful for characterizing many parameters from the same area, supporting powerful correlative analyses. Here, we present an overview of the advantages and limitations of this approach, with the purpose of providing insight into the neuroinflammation field. We also provide a review of existing fluorescent mouse models and describe how these models have been used in studies of neuroinflammation. Finally, the potential for developing advanced genetic tools and imaging resources is discussed. © 2016 by John Wiley & Sons, Inc.

Keywords: adaptive immunity; intravital imaging; neuroinflammation; reporter mice

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Cells Implicated in Neuroinflammation
  • Markers Expressed by Microglial Cells Versus Myeloid Cells
  • Imaging Neuroinflammation
  • Fluorescent Mice Allowing Cell Visualization to Decipher the Dynamics of Inflammatory Responses
  • Use of Transgenic Reporter Mice Examples
  • Future Directions
  • Acknowledgments
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Aisen, P.S. 2002. The potential of anti‐inflammatory drugs for the treatment of Alzheimer's disease. Lancet Neurol. 1:279‐284. doi: 10.1016/S1474‐4422(02)00133‐3.
  Aloisi, F., Ria, F., and Adorini, L. 2000. Regulation of T‐cell responses by CNS antigen‐presenting cells: Different roles for microglia and astrocytes. Immunol. Today 21:141‐147. doi: 10.1016/S0167‐5699(99)01512‐1.
  Anandasabapathy, N., Victora, G.D., Meredith, M., Feder, R., Dong, B., Kluger, C., Yao, K., Dustin, M.L., Nussenzweig, M.C., Steinman, R.M, and Liu, K. 2011. Flt3L controls the development of radiosensitive dendritic cells in the meninges and choroid plexus of the steady‐state mouse brain. J. Exp. Med. 208:1695‐1705. doi: 10.1084/jem.20102657.
  Auffray, C., Sieweke, M.H., and Geissmann, F. 2009. Blood monocytes: Development, heterogeneity, and relationship with dendritic cells. Annu. Rev. Immunol. 27:669‐692. doi: 10.1146/annurev.immunol.021908.132557.
  Banati, R.B., Gehrmann, J., Schubert, P., and Kreutzberg, G.W. 1993. Cytotoxicity of microglia. Glia 7:111‐118. doi: 10.1002/glia.440070117.
  Battistini, L., Fischer, F.R., Raine, C.S., and Brosnan, C.F. 1996. CD1b is expressed in multiple sclerosis lesions. J. Neuroimmunol. 67:145‐151. doi: 10.1016/0165‐5728(96)00045‐8.
  Block, M.L. and Hong, J.‐S. 2005. Microglia and inflammation‐mediated neurodegeneration: Multiple triggers with a common mechanism. Prog. Neurobiol. 76:77‐98. doi: 10.1016/j.pneurobio.2005.06.004.
  Boes, M., Cerny, J., Massol, R., Op den Brouw, M., Kirchhausen, T., Chen, J., and Ploegh, H. 2002. T‐cell engagement of dendritic cells rapidly rearranges MHC class II transport. Nature 418:983‐988. doi: 10.1038/nature01004.
  Bonte, S., Snauwaert, S., Vanhee, S., Dolens, A.‐C., Taghon, T., Vandekerckhove, B., and Kerre, T. 2016. Humanized mice to study human T cell development. Methods Mol. Biol. 1323:253‐272. doi: 10.1007/978‐1‐4939‐2809‐5_21.
  Bulloch, K., Miller, M.M., Gal‐Toth, J., Milner, T.A., Gottfried‐Blackmore, A., Waters, E.M., Kaunzner, U.W., Liu, K., Lindquist, R., Nussenzweig, M.C., Steinman R.M., and McEwen, B.S. 2008. CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain. J. Comp. Neurol. 508:687‐710. doi: 10.1002/cne.21668.
  Chen, M.‐K. and Guilarte, T.R. 2008. Translocator protein 18 kDa (TSPO): Molecular sensor of brain injury and repair. Pharmacol. Ther. 118:1‐17. doi: 10.1016/j.pharmthera.2007.12.004.
  Chen, X., Kezic, J., Bernard, C., and McMenamin, P.G. 2013. Rd8 mutation in the Crb1 gene of CD11c‐eYFP transgenic reporter mice results in abnormal numbers of CD11c‐positive cells in the retina. J. Neuropathol. Exp. Neurol. 72:782‐790. doi: 10.1097/NEN.0b013e31829e8375.
  Das, A., Chai, J.C., Kim, S.H., Park, K.S., Lee, Y.S., Jung, K.H., and Chai, Y.G. 2015. Dual RNA sequencing reveals the expression of unique transcriptomic signatures in lipopolysaccharide‐induced BV‐2 microglial cells. PloS One 10:e0121117. doi: 10.1371/journal.pone.0121117.
  Dorand, R.D., Barkauskas, D.S., Evans, T.A., Petrosiute, A., and Huang, A.Y. 2014. Comparison of intravital thinned skull and cranial window approaches to study CNS immunobiology in the mouse cortex. Intravital 3:e29728. doi: 10.4161/intv.29728.
  Duffield, J.S., Forbes, S.J., Constandinou, C.M., Clay, S., Partolina, M., Vuthoori, S., Wu, S., Lang, R., and Iredale, J.P. 2005. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J. Clin. Invest. 115:56‐65. doi: 10.1172/JCI200522675.
  Faust, N., Varas, F., Kelly, L.M., Heck, S., and Graf, T. 2000. Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages. Blood 96:719‐726.
  Feng, G., Mellor, R.H., Bernstein, M., Keller‐Peck, C., Nguyen, Q.T., Wallace, M., Nerbonne, J.M., Lichtman, J.W., and Sanes, J.R. 2000. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28:41‐51. doi: 10.1016/S0896‐6273(00)00084‐2.
  Fenrich, K.K., Weber, P., Rougon, G., and Debarbieux, F. 2013. Implanting glass spinal cord windows in adult mice with experimental autoimmune encephalomyelitis. J. Vis. Exp. (82):e50826. doi: 10.3791/50826.
  Fenrich, K.K., Weber, P., Hocine, M., Zalc, M., Rougon, G., and Debarbieux, F. 2012. Long‐term in vivo imaging of normal and pathological mouse spinal cord with subcellular resolution using implanted glass windows. J. Physiol. 590:3665‐3675. doi: 10.1113/jphysiol.2012.230532.
  Fuhrmann, M., Bittner, T., Jung, C.K.E., Burgold, S., Page, R.M., Mitteregger, G., Haass, C., LaFerla, F.M., Kretzschmar, H., and Herms, J. 2010. Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer's disease. Nat. Neurosci. 13:411‐413. doi: 10.1038/nn.2511.
  Gao, H.‐M., Liu, B., Zhang, W., and Hong, J.S. 2003. Critical role of microglial NADPH oxidase‐derived free radicals in the in vitro MPTP model of Parkinson's disease. FASEB J. 17:1954‐1956. doi: 10.1096/fj.03‐0109fje
  Garcia, J.A., Cardona, S.M., and Cardona, A.E. 2013. Analyses of microglia effector function using CX3CR1‐GFP knock‐in mice. Methods Mol. Biol. 1041:307‐317. doi: 10.1007/978‐1‐62703‐520‐0_27.
  Gimsa, U., Mitchison, N.A., and Brunner‐Weinzierl, M.C. 2013. Immune privilege as an intrinsic CNS property: Astrocytes protect the CNS against T‐cell‐mediated neuroinflammation. Mediators Inflamm. 2013:1‐11. doi: 10.1155/2013/320519.
  Ginhoux, F., Greter, M., Leboeuf, M., Nandi, S., See, P., Gokhan, S., Mehler, M.F, Conway, S.J., Ng, L.G., Stanley, E.R., Samokhvalov, I.M., and Merad, M. 2010. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841‐845. doi: 10.1126/science.1194637.
  Gong, Y. 2015. The evolving capabilities of rhodopsin‐based genetically encoded voltage indicators. Curr. Opin. Chem. Biol. 27:84‐89. doi: 10.1016/j.cbpa.2015.05.006.
  Greter, M., Lelios, I., and Croxford, A.L. 2015. Microglia versus myeloid cell nomenclature during brain inflammation. Front. Immunol. 6:249. doi: 10.3389/fimmu.2015.00249.
  Güç, E., Fankhauser, M., Lund, A.W., Swartz, M.A., and Kilarski, W.W. 2014. Long‐term intravital immunofluorescence imaging of tissue matrix components with epifluorescence and two‐photon microscopy. J. Vis. Exp. (86):e51388. doi: 10.3791/51388.
  Hailer, N.P., Heppner, F.L., Haas, D., and Nitsch, R. 1998. Astrocytic factors deactivate antigen presenting cells that invade the central nervous system. Brain Pathol. 8:459‐474. doi: 10.1111/j.1750‐3639.1998.tb00168.x.
  Hindinger, C., Bergmann, C.C., Hinton, D.R., Phares, T.W., Parra, G.I., Hussain, S., Savarin, C., Atkinson, R.D., and Stohlman, S.A. 2012. IFN‐γ signaling to astrocytes protects from autoimmune mediated neurological disability. PloS One 7:e42088. doi: 10.1371/journal.pone.0042088.
  Hoover, E.E. and Squier, J.A. 2013. Advances in multiphoton microscopy technology. Nat. Photonics 7:93‐101. doi: 10.1038/nphoton.2012.361.
  Iqbal, A.J., McNeill, E., Kapellos, T.S., Regan‐Komito, D., Norman, S., Burd, S., Smart, N., Machemer, D.E.W., Stylianou, E., McShane, H., Channon, K.M., Chawla, A., and Greaves, D.R. 2014. Human CD68 promoter GFP transgenic mice allow analysis of monocyte to macrophage differentiation in vivo. Blood 124:e33‐e44. doi: 10.1182/blood‐2014‐04‐568691.
  Jacobs, A.H. and Tavitian, B. 2012. Noninvasive molecular imaging of neuroinflammation. J. Cereb. Blood Flow Metab. 32:1393‐1415. doi: 10.1038/jcbfm.2012.53.
  Jiang, R., Haustein, M.D., Sofroniew, M.V, and Khakh, B.S. 2014. Imaging intracellular Ca2+ signals in striatal astrocytes from adult mice using genetically‐encoded calcium indicators. J. Vis. Exp. (93):e51972. doi: 10.3791/51972.
  Jung, S., Aliberti, J., Graemmel, P., Sunshine, M.J., Kreutzberg, G.W., Sher, A., and Littman, D.R. 2000. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell Biol. 20:4106‐4114. doi: 10.1128/MCB.20.11.4106‐4114.2000.
  Jung, S., Unutmaz, D., Wong, P., Sano, G.‐I., De los Santos, K., Sparwasser, T., Wu, S., Vuthoori, S., Ko, K., Zavala, F., Pamer, E.G., Littman, D.R., and Lang, R.A. 2002. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell‐associated antigens. Immunity 17:211‐220. doi: 10.1016/S1074‐7613(02)00365‐5.
  Kannan, S., Balakrishnan, B., Muzik, O., Romero, R., and Chugani, D. 2009. Positron emission tomography imaging of neuroinflammation. J. Child Neurol. 24:1190‐1199. doi: 10.1177/0883073809338063.
  Kawakami, N. and Flügel, A. 2010. Knocking at the brain's door: Intravital two‐photon imaging of autoreactive T cell interactions with CNS structures. Semin. Immunopathol. 32:275‐287. doi: 10.1007/s00281‐010‐0216‐x.
  Kierdorf, K., Erny, D., Goldmann, T., Sander, V., Schulz, C., Perdiguero, E.G., Wieghofer, P., Heinrich, A., Riemke, P., Hölscher, C., Müller, D.N., Luckow, B., Brocker, T., Debowski, K., Fritz, G., Opdenakker, G., Diefenbach, A., Biber, K., Heikenwalder, M., Geissmann, F., Rosenbauer, F., and Prinz, M. 2013. Microglia emerge from erythromyeloid precursors via Pu.1‐ and Irf8‐dependent pathways. Nat. Neurosci. 16:273‐280. doi: 10.1038/nn.3318.
  Kim, K.‐W., Vallon‐Eberhard, A., Zigmond, E., Farache, J., Shezen, E., Shakhar, G., Ludwig, A., Lira, S.A., and Jung, S. 2011. In vivo structure/function and expression analysis of the CX3C chemokine fractalkine. Blood 118:e156‐e167. doi: 10.1182/blood‐2011‐04‐348946.
  Kore, R.A. and Abraham, E.C. 2014. Inflammatory cytokines, interleukin‐1 beta and tumor necrosis factor‐alpha, upregulated in glioblastoma multiforme, raise the levels of CRYAB in exosomes secreted by U373 glioma cells. Biochem. Biophys. Res. Commun. 453:326‐331. doi: 10.1016/j.bbrc.2014.09.068.
  Koyanagi, M., Kawakabe, S., and Arimura, Y. 2015. A comparative study of colorimetric cell proliferation assays in immune cells. Cytotechnology. [ePub ahead of print]. doi: 10.1007/s10616‐015‐9909‐2.
  Kwan, A.C., Duff, K., Gouras, G.K., and Webb, W.W. 2009. Optical visualization of Alzheimer's pathology via multiphoton‐excited intrinsic fluorescence and second harmonic generation. Opt. Express 17:3679‐3689. doi: 10.1364/OE.17.003679.
  Laffray, S., Pagès, S., Dufour, H., De Koninck, P., De Koninck, Y., and Côté, D. 2011. Adaptive movement compensation for in vivo imaging of fast cellular dynamics within a moving tissue. PloS One 6:e19928. doi: 10.1371/journal.pone.0019928.
  Lindquist, R.L., Shakhar, G., Dudziak, D., Wardemann, H., Eisenreich, T., Dustin, M.L., and Nussenzweig, M.C. 2004. Visualizing dendritic cell networks in vivo. Nat. Immunol. 5:1243‐1250. doi: 10.1038/ni1139.
  Littman, D.R. 2013. An inducible cre recombinase driven by Cx3cr1. MGI Direct Data Submission, available at http://www.informatics.jax.org/allele/MGI:5450813.
  London, A., Cohen, M., and Schwartz, M. 2013. Microglia and monocyte‐derived macrophages: Functionally distinct populations that act in concert in CNS plasticity and repair. Front. Cell Neurosci. 7:34. doi: 10.3389/fncel.2013.00034.
  Mahou, P., Zimmerley, M., Loulier, K., Matho, K.S., Labroille, G., Morin, X., Supatto, W., Livet, J., Débarre, D., and Beaurepaire, E. 2012. Multicolor two‐photon tissue imaging by wavelength mixing. Nat. Methods 9:815‐818. doi: 10.1038/nmeth.2098.
  Malcor, J.‐D., Payrot, N., David, M., Faucon, A., Abouzid, K., Jacquot, G., Floquet, N., Debarbieux, F., Rougon, G., Martinez, J., Khrestchatisky, M., Vlieghe, P., and Lisowski, V. 2012. Chemical optimization of new ligands of the low‐density lipoprotein receptor as potential vectors for central nervous system targeting. J. Med. Chem. 55:2227‐2241. doi: 10.1021/jm2014919.
  Marker, D.F., Tremblay, M.‐E., Lu, S.‐M., Majewska, A.K., and Gelbard, H.A. 2010. A thin‐skull window technique for chronic two‐photon in vivo imaging of murine microglia in models of neuroinflammation. J. Vis. Exp. (43):e2059. doi: 10.3791/2059.
  Marvin, J.S., Borghuis, B.G., Tian, L., Cichon, J., Harnett, M.T., Akerboom, J., Gordus, A., Renninger, S.L., Chen, T.‐W., Bargmann, C.I., Orger, M.B., Schreiter, E.R., Demb, J.B., Gan, W.‐B., Hires, S.A., and Looger, L.L. 2013. An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat. Methods 10:162‐170. doi: 10.1038/nmeth.2333.
  McAllister, A.K. and van de Water, J. 2009. Breaking boundaries in neural‐immune interactions. Neuron 64:9‐12. doi: 10.1016/j.neuron.2009.09.038.
  Naidenko, O.V, Koezuka, Y., and Kronenberg, M. 2000. CD1‐mediated antigen presentation of glycosphingolipids. Microbes Infect. 2:621‐631. doi: 10.1016/S1286‐4579(00)00363‐4.
  Niesner, R., Andresen, V., and Gunzer, M. 2008. Intravital two‐photon microscopy: Focus on speed and time resolved imaging modalities. Immunol. Rev. 221:7‐25. doi: 10.1111/j.1600‐065X.2008.00582.x.
  Parkhurst, C.N., Yang, G., Ninan, I., Savas, J.N., Yates, J.R., 3rd, Lafaille, J.J., Hempstead, B.L., Littman, D.R., and Gan, W.B. 2013. Microglia promote learning‐dependent synapse formation through brain‐derived neurotrophic factor. Cell 155:1596‐1609. doi: 10.1016/j.cell.2013.11.030.
  Pasternak, O., Kubicki, M., and Shenton, M.E. 2015. In vivo imaging of neuroinflammation in schizophrenia. Schizophr. Res. [ePub ahead of print]. doi:10.1016/j.schres.2015.05.034.
  Perdiguero, E.G., Klapproth, K., Schulz, C., Busch, K., Azzoni, E., Crozet, L., Garner, H., Trouillet, C., de Bruijn, M.F., Geissmann, F., and Rodewald, H. 2014. Tissue‐resident macrophages originate from yolk‐sac‐derived erythro‐myeloid progenitors. Nature 518:547‐551. doi: 10.1038/nature13989.
  Prendergast, F.G. and Mann, K.G. 1978. Chemical and physical properties of aequorin and the green fluorescent protein isolated from Aequorea forskålea. Biochemistry 17:3448‐3453. doi: 10.1021/bi00610a004.
  Ricard, C. and Debarbieux, F.C. 2014. Six‐color intravital two‐photon imaging of brain tumors and their dynamic microenvironment. Front. Cell Neurosci. 8:57. doi: 10.3389/fncel.2014.00057.
  Ricard, C., Stanchi, F., Rougon, G., and Debarbieux, F. 2014. An orthotopic glioblastoma mouse model maintaining brain parenchymal physical constraints and suitable for intravital two‐photon microscopy. J. Vis. Exp. (86):e51108. doi: 10.3791/51108.
  Ricard, C., Stanchi, F., Rodriguez, T., Amoureux, M.‐C., Rougon, G., and Debarbieux, F. 2013. Dynamic quantitative intravital imaging of glioblastoma progression reveals a lack of correlation between tumor growth and blood vessel density. PloS One 8:e72655. doi: 10.1371/journal.pone.0072655.
  Rigato, C., Swinnen, N., Buckinx, R., Couillin, I., Mangin, J.‐M., Rigo, J.‐M., Legendre, P., and Le Corronc, H. 2012. Microglia proliferation is controlled by P2X7 receptors in a Pannexin‐1‐independent manner during early embryonic spinal cord invasion. J. Neurosci. 32:11559‐11573. doi: 10.1523/JNEUROSCI.1042‐12.2012.
  Rock, R.B. and Peterson, P.K. 2006. Microglia as a pharmacological target in infectious and inflammatory diseases of the brain. J. Neuroimmune Pharmacol. 1:117‐126. doi: 10.1007/s11481‐006‐9012‐8.
  Rohde, G.K., Dawant, B.M., and Lin, S.‐F. 2005. Correction of motion artifact in cardiac optical mapping using image registration. IEEE Trans. Biomed. Eng. 52:338‐341. doi: 10.1109/TBME.2004.840464.
  Rupprecht, R., Papadopoulos, V., Rammes, G., Baghai, T. C., Fan, J., Akula, N., Groyer, G., Adams, D., and Schumacher, M. 2010. Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat. Rev. Drug Discov. 9:971‐988. doi: 10.1038/nrd3295.
  Saba, W., Goutal, S., Kuhnast, B., Dollé, F., Auvity, S., Fontyn, Y., Cayla, J., Peyronneau, M.‐A., Valette, H., and Tournier, N. 2015. Differential influence of propofol and isoflurane anesthesia in a non‐human primate on the brain kinetics and binding of [(18) F]DPA‐714, a positron emission tomography imaging marker of glial activation. Eur. J. Neurosci. 42:1738‐1745. doi: 10.1111/ejn.12946.
  Schwartz, M. 2003. Macrophages and microglia in central nervous system injury: Are they helpful or harmful? J. Cereb. Blood Flow Metab. 23:385‐394. doi: 10.1097/01.WCB.0000061881.75234.5E.
  Serres, E., Debarbieux, F., Stanchi, F., Maggiorella, L., Grall, D., Turchi, L., Burel‐Vandenbos, F., Figarella‐Branger, D., Virolle, T., Rougon, G., and Van Obberghen‐Schilling, E. 2014. Fibronectin expression in glioblastomas promotes cell cohesion, collective invasion of basement membrane in vitro and orthotopic tumor growth in mice. Oncogene 33:3451‐3462. doi: 10.1038/onc.2013.305.
  Shechter, R., Miller, O., Yovel, G., Rosenzweig, N., London, A., Ruckh, J., Kim, K.W., Klein, E., Kalchenko, V., Bendel, P., Lira, S.A., Jung, S., and Schwartz, M. 2013. Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity 38:555‐569. doi: 10.1016/j.immuni.2013.02.012.
  Singh, Y., Dyson, J., and Garden, O.A. 2011. Use of SNARF‐1 to measure murine T cell proliferation in vitro and its application in a novel regulatory T cell suppression assay. Immunol. Lett. 140:21‐29. doi: 10.1016/j.imlet.2011.05.011.
  Stepanenko, O.V., Stepanenko, O.V., Shcherbakova, D.M., Kuznetsova, I.M., Turoverov, K.K., and Verkhusha, V.V. 2011. Modern fluorescent proteins: From chromophore formation to novel intracellular applications. BioTechniques 51:313‐327. doi: 10.2144/000113765.
  Tang, P., Hu, G., Gao, Y., Li, W., Yao, S., Liu, Z., and Ma, D. 2014. The microwave adsorption behavior and microwave‐assisted heteroatoms doping of graphene‐based nano‐carbon materials. Sci. Rep. 4:5901. doi:10.1038/srep05901.
  Tang, P., Zhang, Y., Chen, C., Ji, X., Ju, F., Liu, X., Gan, W.‐B., He, Z., Zhang, S., Li, W., and Zhang, L. 2015. In vivo two‐photon imaging of axonal dieback, blood flow, and calcium influx with methylprednisolone therapy after spinal cord injury. Sci. Rep. 5:9691. doi: 10.1038/srep09691.
  Tauskela, J.S., Hewitt, K., Kang, L.P., Comas, T., Gendron, T., Hakim, A., Hogan, M., Durkin, J., and Morley, P. 2000. Evaluation of glutathione‐sensitive fluorescent dyes in cortical culture. Glia 30:329‐341. doi: 10.1002/(SICI)1098‐1136(200006)30:4%3c329::AID‐GLIA20%3e3.0.CO;2‐R.
  Taylor, J.M., Saunter, C.D., Love, G.D., Girkin, J.M., Henderson, D.J., and Chaudhry, B. 2011. Real‐time optical gating for three‐dimensional beating heart imaging. J. Biomed. Opt. 16:116021. doi: 10.1117/1.3652892.
  Tóth, M., Doorduin, J., Häggkvist, J., Varrone, A., Amini, N., Halldin, C., and Gulyás, B. 2015. Positron emission tomography studies with [11C]PBR28 in the healthy rodent brain: Validating SUV as an outcome measure of neuroinflammation. PLoS One 10:e0125917. doi: 10.1371/journal.pone.0125917.
  Tsai, C.‐K., Chen, Y.‐S., Wu, P.‐C., Hsieh, T.‐Y., Liu, H.‐W., Yeh, C.‐Y., Lin, W.‐L., Chia, J.‐S., and Liu, T.‐M. 2012. Imaging granularity of leukocytes with third harmonic generation microscopy. Biomed. Opt. Express 3:2234‐2243. doi: 10.1364/BOE.3.002234.
  Utschig, L., Soltau, S., and Tiede, D. 2015. Light‐driven hydrogen production from photosystem I‐catalyst hybrids. Curr. Opin. Chem. Biol. 25:1‐8. doi: 10.1016/j.cbpa.2014.11.019.
  Vandepitte, J., Maes, J., Van Cleynenbreugel, B., Van Poppel, H., Lerut, E., Agostinis, P., and de Witte, P.A.M. 2010. An improved orthotopic rat bladder tumor model using Dil‐loaded fluorescent AY‐27 cells. Cancer Biol. Ther. 9:986‐993. doi: 10.4161/cbt.9.12.11638.
  Venneti, S., Lopresti, B., and Wiley, C. 2013. Molecular imaging of microglia/macrophages in the brain. Glia 61:10‐23. doi: 10.1002/glia.22357.
  Virgone‐Carlotta, A., Uhlrich, J., Akram, M.N., Ressnikoff, D., Chrétien, F., Domenget, C., Gherardi, R., Despars, G., Jurdic, P., Honnorat, J., Nataf, S., and Touret, M. 2013. Mapping and kinetics of microglia/neuron cell‐to‐cell contacts in the 6‐OHDA murine model of Parkinson's disease. Glia 61:1645‐1658. doi: 10.1002/glia.22546.
  Weiner, H.L. and Selkoe, D.J. 2002. Inflammation and therapeutic vaccination in CNS diseases. Nature 420:879‐884. doi: 10.1038/nature01325.
  Winkler, M., Jester, B., Nien‐Shy, C., Massei, S., Minckler, D.S., Jester, J.V, and Brown, D.J. 2010. High resolution three‐dimensional reconstruction of the collagenous matrix of the human optic nerve head. Brain Res. Bull. 81:339‐348. doi: 10.1016/j.brainresbull.2009.06.001.
  Yan, H., He, L., Zhao, W., Li, J., Xiao, Y., Yang, R., and Tan, W. 2014. Poly β‐cyclodextrin/TPdye nanomicelle‐based two‐photon nanoprobe for caspase‐3 activation imaging in live cells and tissues. Anal. Chem. 86:11440‐11450. doi: 10.1021/ac503546r.
  Yang, M., Wei, X., Li, J., Heine, L.A., Rosenwasser, R., and Iacovitti, L. 2010. Changes in host blood factors and brain glia accompanying the functional recovery after systemic administration of bone marrow stem cells in ischemic stroke rats. Cell Transplant. 19:1073‐1084. doi: 10.3727/096368910X503415.
  Zlokovic, B. 2008. The blood‐brain barrier in health and chronic neurodegenerative disorders. Neuron 57:178‐201. doi: 10.1016/j.neuron.2008.01.003.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library