An Overview of Mouse Models of Nonalcoholic Steatohepatitis: From Past to Present

Ans Jacobs1, Anne‐Sophie Warda1, Jef Verbeek2, David Cassiman3, Pieter Spincemaille4

1 Department of Hepatology, University Hospitals KU Leuven, Leuven, Belgium, 2 Division of Gastroenterology and Hepatology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands, 3 Metabolic Center, University Hospitals KU Leuven, Leuven, Belgium, 4 Department of Laboratory Medicine, University Hospitals KU Leuven, Leuven, Belgium
Publication Name:  Current Protocols in Mouse Biology
Unit Number:   
DOI:  10.1002/cpmo.3
Online Posting Date:  June, 2016
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Non‐alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the Western world. It is associated with obesity and type 2 diabetes and represents a spectrum of histological abnormalities ranging from simple steatosis to non‐alcoholic steatohepatitis (NASH), which can further progress to fibrosis, cirrhosis, hepatocellular carcinoma (HCC), and liver failure. To gain insight into the pathogenesis and evaluate treatment options, mouse models of NAFLD/NASH are of utmost importance. There is a high phenotypical variety in the available mouse models, however, models that truly display the full spectrum of histopathological and metabolic features associated with human NASH are rare. In this review, we summarize the most important NAFLD/NASH mouse models that have been developed over the years and briefly highlight the pros and cons. Also, we illustrate the preclinical research in which these models have been used. © 2016 by John Wiley & Sons, Inc.

Keywords: mouse models; NAFLD; NASH; steatohepatitis; steatosis

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • NASH Mouse Models: From Past to Present
  • Advances in Preclinical Research Using NASH Mouse Models
  • General Conclusions
  • Acknowledgments
  • Conflict Of Interest
  • Literature Cited
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Abdelmalek, M.F., Suzuki, A., Guy, C., Unalp‐Arida, A., Colvin, R., Johnson, R.J., and Diehl, A.M. 2010. Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology 51:1961‐1971. doi: 10.1002/hep.23535.
  Alvarez‐Satta, M., Castro‐Sanchez, S., and Valverde, D. 2015. Alstrom syndrome: Current perspectives. Appl. Clin. Genet. 8:171‐179. doi: 10.2147/TACG.S56612.
  Anstee, Q.M., and Goldin, R.D. 2006. Mouse models in non‐alcoholic fatty liver disease and steatohepatitis research. Int. J. Exp. Pathol. 87:1‐16. doi: 10.1111/j.0959‐9673.2006.00465.x.
  Arsov, T., Silva, D.G., O'Bryan, M.K., Sainsbury, A., Lee, N.J., Kennedy, C., Manji, S.S., Nelms, K., Liu, C., Vinuesa, C.G., de Kretser, D.M., Goodnow, C.C., and Petrovsky, N. 2006. Fat aussie—a new Alström syndrome mouse showing a critical role for ALMS1 in obesity, diabetes, and spermatogenesis. Mol. Endocrinol. 20:1610‐1622. doi: 10.1210/me.2005‐0494.
  Bedogni, G., Miglioli, L., Masutti, F., Tiribelli, C., Marchesini, G., and Bellentani, S. 2005. Prevalence of and risk factors for nonalcoholic fatty liver disease: The dionysos nutrition and liver study. Hepatology 42:44‐52. doi: 10.1002/hep.20734.
  Bergheim, I., Weber, S., Vos, M., Kramer, S., Volynets, V., Kaserouni, S., McClain, C.J., and Bischoff, S.C. 2008. Antibiotics protect against fructose‐induced hepatic lipid accumulation in mice: Role of endotoxin. J. Hepatol. 48:983‐992. doi: 10.1016/j.jhep.2008.01.035.
  Bethanis, S.K. and Theocharis, S.E. 2006. Leptin in the field of hepatic fibrosis: A pivotal or an incidental player? Dig. Dis. Sci. 51:1685‐1696. doi: 10.1007/s10620‐006‐9126‐0.
  Bhat, A., Sebastiani, G., and Bhat, M. 2015. Systematic review: Preventive and therapeutic applications of metformin in liver disease. World J. Hepatol. 7:1652‐1659. doi: 10.4254/wjh.v7.i12.1652.
  Bhatt, H.B. and Smith, R.J. 2015. Fatty liver disease in diabetes mellitus. Hepatobiliary Surg. Nutr. 4:101‐108. doi: 10.3978/j.issn.2304‐3881.2015.01.03.
  Bieghs, V., Van Gorp, P.J., Wouters, K., Hendrikx, T., Gijbels, M.J., van Bilsen, M., Bakker, J., Binder, C.J., Lutjohann, D., Staels, B., Hofker, M.H., and Shiri‐Sverdlov, R. 2012. LDL receptor knock‐out mice are a physiological model particularly vulnerable to study the onset of inflammation in non‐alcoholic fatty liver disease. PLoS One 7:e30668. doi: 10.1371/journal.pone.0030668.
  Bjelakovic, G., Gluud, L.L., Nikolova, D., Bjelakovic, M., Nagorni, A., and Gluud, C. 2010. Meta‐analysis: Antioxidant supplements for liver diseases – the Cochrane Hepato‐Biliary Group. Aliment Pharmacol. Ther. 32:356‐367. doi: 10.1111/j.1365‐2036.2010.04371.x.
  Blachier, M., Leleu, H., Peck‐Radosavljevic, M., Valla, D.C., and Roudot‐Thoraval, F. 2013. The burden of liver disease in Europe: A review of available epidemiological data. J. Hepatol. 58:593‐608. doi: 10.1016/j.jhep.2012.12.005.
  Blonski, W., Kotlyar, D.S., and Forde, K.A. 2010. Non‐viral causes of hepatocellular carcinoma. World J. Gastroenterol. 16:3603‐3615. doi: 10.3748/wjg.v16.i29.3603.
  Brunt, E.M. 2011. Non‐alcoholic fatty liver disease: What's new under the microscope? Gut 60:1152‐1158. doi: 10.1136/gut.2010.218214.
  Bugianesi, E., Moscatiello, S., Ciaravella, M.F., and Marchesini, G. 2010. Insulin resistance in nonalcoholic fatty liver disease. Curr. Pharm. Des. 16:1941‐1951. doi: 10.2174/138161210791208875.
  Cassiman, D. and Jaeken, J. 2008. NASH may be trash. Gut 57:141‐144. doi: 10.1136/gut.2007.123240.
  Chalasani, N., Crabb, D.W., Cummings, O.W., Kwo, P.Y., Asghar, A., Pandya, P.K., and Considine, R.V. 2003. Does leptin play a role in the pathogenesis of human nonalcoholic steatohepatitis? Am. J. Gastroenterol. 98:2771‐2776. doi: 10.1111/j.1572‐0241.2003.08767.x.
  Chalasani, N., Younossi, Z., Lavine, J.E., Diehl, A.M., Brunt, E.M., Cusi, K., Charlton, M., Sanyal, A.J. 2012. The diagnosis and management of non‐alcoholic fatty liver disease: Practice Guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology. Gastroenterology 142:1592‐1609. doi: 10.1053/j.gastro.2012.04.001.
  Charlton, M.R., Burns, J.M., Pedersen, R.A., Watt, K.D., Heimbach, J.K., and Dierkhising, R.A. 2011. Frequency and outcomes of liver transplantation for nonalcoholic steatohepatitis in the United States. Gastroenterology 141:1249‐1253. doi: 10.1053/j.gastro.2011.06.061.
  Chen, R., Wang, Q., Song, S., Liu, F., He, B., and Gao, X. 2016. Protective role of autophagy in methionine‐choline deficient diet‐induced advanced nonalcoholic steatohepatitis in mice. Eur. J. Pharmacol. 770:126‐133. doi: 10.1016/j.ejphar.2015.11.012.
  Choi, S.Y., Fong, L.G., Kirven, M.J., and Cooper, A.D. 1991. Use of an anti‐low density lipoprotein receptor antibody to quantify the role of the LDL receptor in the removal of chylomicron remnants in the mouse in vivo. J. Clin. Invest. 88:1173‐1181. doi: 10.1172/JCI115419.
  Chung, H.K., Kim, Y.K., Park, J.H., Ryu, M.J., Chang, J.Y., Hwang, J.H., Lee, C.H., Kim, S.H., Kim, H.J., Kweon, G.R., Kim, K.S., and Shong, M. 2015. The indole derivative NecroX‐7 improves nonalcoholic steatohepatitis in ob/ob mice through suppression of mitochondrial ROS/RNS and inflammation. Liver Int. 35:1341‐1353. doi: 10.1111/liv.12741.
  Chung, M.Y., Yeung, S.F., Park, H.J., Volek, J.S., and Bruno, R.S. 2010. Dietary α‐ and γ‐tocopherol supplementation attenuates lipopolysaccharide‐induced oxidative stress and inflammatory‐related responses in an obese mouse model of nonalcoholic steatohepatitis. J. Nutr. Biochem. 21:1200‐1206. doi: 10.1016/j.jnutbio.2009.10.006.
  Cong, W.N., Tao, R.Y., Tian, J.Y., Liu, G.T., and Ye, F. 2008. The establishment of a novel non‐alcoholic steatohepatitis model accompanied with obesity and insulin resistance in mice. Life Sci. 82:983‐990. doi: 10.1016/j.lfs.2008.01.022.
  Crescenzo, R., Bianco, F., Coppola, P., Mazzoli, A., Tussellino, M., Carotenuto, R., Liverini, G., and Iossa, S. 2014. Fructose supplementation worsens the deleterious effects of short‐term high‐fat feeding on hepatic steatosis and lipid metabolism in adult rats. Exp. Physiol. 99:1203‐1213. doi: 10.1113/expphysiol.2014.079632.
  Day, C.P., and James, O.F. 1998. Steatohepatitis: A tale of two “hits”? Gastroenterology 114:842‐845. doi: 10.1016/S0016‐5085(98)70599‐2.
  de Oliveira, C.P., de Lima, V.M., Simplicio, F.I., Soriano, F.G., de Mello, E.S., de Souza, H.P., Alves, V.A., Laurindo, F.R., Carrilho, F.J., and de Oliveira, M.G. 2008. Prevention and reversion of nonalcoholic steatohepatitis in OB/OB mice by S‐nitroso‐N‐acetylcysteine treatment. J. Am. Coll. Nutr. 27:299‐305. doi: 10.1080/07315724.2008.10719703.
  Deng, Q.G., She, H., Cheng, J.H., French, S.W., Koop, D.R., Xiong, S., and Tsukamoto, H. 2005. Steatohepatitis induced by intragastric overfeeding in mice. Hepatology 42:905‐914. doi: 10.1002/hep.20877.
  Depner, C.M., Philbrick, K.A., and Jump, D.B. 2013. Docosahexaenoic acid attenuates hepatic inflammation, oxidative stress, and fibrosis without decreasing hepatosteatosis in a Ldlr‐/‐ mouse model of western diet‐induced nonalcoholic steatohepatitis. J. Nutr. 143:315‐323. doi: 10.3945/jn.112.171322.
  Depner, C.M., Torres‐Gonzalez, M., Tripathy, S., Milne, G., and Jump, D.B. 2012. Menhaden oil decreases high‐fat diet‐induced markers of hepatic damage, steatosis, inflammation, and fibrosis in obese Ldlr‐/‐ mice. J. Nutr. 142:1495‐1503. doi: 10.3945/jn.112.158865.
  Dowman, J.K., Tomlinson, J.W., and Newsome, P.N. 2010. Pathogenesis of non‐alcoholic fatty liver disease. Qjm 103:71‐83. doi: 10.1093/qjmed/hcp158.
  Eckard, C., Cole, R., Lockwood, J., Torres, D.M., Williams, C.D., Shaw, J.C., and Harrison, S.A. 2013. Prospective histopathologic evaluation of lifestyle modification in nonalcoholic fatty liver disease: A randomized trial. Therap. Adv. Gastroenterol. 6:249‐259. doi: 10.1177/1756283X13484078.
  Ertle, J., Dechene, A., Sowa, J.P., Penndorf, V., Herzer, K., Kaiser, G., Schlaak, J.F., Gerken, G., Syn, W.K., and Canbay, A. 2011. Non‐alcoholic fatty liver disease progresses to hepatocellular carcinoma in the absence of apparent cirrhosis. Int. J. Cancer 128:2436‐2443. doi: 10.1002/ijc.25797.
  Fan, J.G., and Qiao, L. 2009. Commonly used animal models of non‐alcoholic steatohepatitis. Hepatobiliary Pancreat. Dis. Int. 8:233‐240.
  Favaretto, F., Milan, G., Collin, G.B., Marshall, J.D., Stasi, F., Maffei, P., Vettor, R., and Naggert, J.K. 2014. GLUT4 defects in adipose tissue are early signs of metabolic alterations in Alms1GT/GT, a mouse model for obesity and insulin resistance. PLoS One 9:e109540. doi: 10.1371/journal.pone.0109540.
  Ferre, N., Martinez‐Clemente, M., Lopez‐Parra, M., Gonzalez‐Periz, A., Horrillo, R., Planaguma, A., Camps, J., Joven, J., Tres, A., Guardiola, F., Bataller, R., Arroyo, V., and Claria, J. 2009. Increased susceptibility to exacerbated liver injury in hypercholesterolemic ApoE‐deficient mice: Potential involvement of oxysterols. Am. J. Physiol. Gastrointest. Liver Physiol. 296:G553‐G562. doi: 10.1152/ajpgi.00547.2007.
  Frantz, E.D., Penna‐de‐Carvalho, A., Batista Tde, M., Aguila, M.B., and Mandarim‐de‐Lacerda, C.A. 2014. Comparative effects of the renin‐angiotensin system blockers on nonalcoholic fatty liver disease and insulin resistance in C57BL/6 mice. Metab. Syndr. Relat. Disord. 12:191‐201. doi: 10.1089/met.2013.0129.
  Fujii, M., Shibazaki, Y., Wakamatsu, K., Honda, Y., Kawauchi, Y., Suzuki, K., Arumugam, S., Watanabe, K., Ichida, T., Asakura, H., and Yoneyama, H. 2013. A murine model for non‐alcoholic steatohepatitis showing evidence of association between diabetes and hepatocellular carcinoma. Med. Mol. Morphol. 46:141‐152. doi: 10.1007/s00795‐013‐0016‐1.
  Ganz, M., Bukong, T.N., Csak, T., Saha, B., Park, J.K., Ambade, A., Kodys, K., and Szabo, G. 2015. Progression of non‐alcoholic steatosis to steatohepatitis and fibrosis parallels cumulative accumulation of danger signals that promote inflammation and liver tumors in a high fat‐cholesterol‐sugar diet model in mice. J. Transl. Med. 13:193. doi: 10.1186/s12967‐015‐0552‐7.
  Gariani, K., Menzies, K.J., Ryu, D., Wegner, C.J., Wang, X., Ropelle, E.R., Moullan, N., Zhang, H., Perino, A., Lemos, V., Kim, B., Park, Y.K., Piersigilli, A., Pham, T.X., Yang, Y., Siah Ku, C., Koo, S.I., Fomitchova, A., Canto, C., Schoonjans, K., Sauve, A.A., Lee, J.Y., and Auwerx, J. 2015. Eliciting the mitochondrial unfolded protein response via NAD repletion reverses fatty liver disease. Hepatology doi: 10.1002/hep.28245.
  Gupte, A.A., Liu, J.Z., Ren, Y., Minze, L.J., Wiles, J.R., Collins, A.R., Lyon, C.J., Pratico, D., Finegold, M.J., Wong, S.T., Webb, P., Baxter, J.D., Moore, D.D., and Hsueh, W.A. 2010. Rosiglitazone attenuates age‐ and diet‐associated nonalcoholic steatohepatitis in male low‐density lipoprotein receptor knockout mice. Hepatology 52:2001‐2011. doi: 10.1002/hep.23941.
  Harris, R.B. 2014. Direct and indirect effects of leptin on adipocyte metabolism. Biochim. Biophys. Acta 1842:414‐423. doi: 10.1016/j.bbadis.2013.05.009.
  Hearn, T., Renforth, G.L., Spalluto, C., Hanley, N.A., Piper, K., Brickwood, S., White, C., Connolly, V., Taylor, J.F., Russell‐Eggitt, I., Bonneau, D., Walker, M., and Wilson, D.I. 2002. Mutation of ALMS1, a large gene with a tandem repeat encoding 47 amino acids, causes Alström syndrome. Nat. Genet. 31:79‐83. doi: 10.1038/ng874
  Hebbard, L., and George, J. 2011. Animal models of nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 8:35‐44. doi: 10.1038/nrgastro.2010.191.
  Heindryckx, F., Colle, I., and Van Vlierberghe, H. 2009. Experimental mouse models for hepatocellular carcinoma research. Int. J. Exp. Pathol. 90:367‐386. doi: 10.1111/j.1365‐2613.2009.00656.x.
  Heydet, D., Chen, L.X., Larter, C.Z., Inglis, C., Silverman, M.A., Farrell, G.C., and Leroux, M.R. 2013. A truncating mutation of Alms1 reduces the number of hypothalamic neuronal cilia in obese mice. Dev. Neurobiol. 73:1‐13. doi: 10.1002/dneu.22031.
  Hsiao, P.J., Hsieh, T.J., Kuo, K.K., Hung, W.W., Tsai, K.B., Yang, C.H., Yu, M.L., and Shin, S.J. 2008. Pioglitazone retrieves hepatic antioxidant DNA repair in a mice model of high fat diet. BMC Mol. Biol. 9:82. doi: 10.1186/1471‐2199‐9‐82.
  Ishibashi, S., Brown, M.S., Goldstein, J.L., Gerard, R.D., Hammer, R.E., and Herz, J. 1993. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus‐mediated gene delivery. J. Clin. Invest. 92:883‐893. doi: 10.1172/JCI116663.
  Ishimoto, T., Lanaspa, M.A., Rivard, C.J., Roncal‐Jimenez, C.A., Orlicky, D.J., Cicerchi, C., McMahan, R.H., Abdelmalek, M.F., Rosen, H.R., Jackman, M.R., MacLean, P.S., Diggle, C.P., Asipu, A., Inaba, S., Kosugi, T., Sato, W., Maruyama, S., Sanchez‐Lozada, L.G., Sautin, Y.Y., Hill, J.O., Bonthron, D.T., and Johnson, R.J. 2013. High‐fat and high‐sucrose (western) diet induces steatohepatitis that is dependent on fructokinase. Hepatology 58:1632‐1643. doi: 10.1002/hep.26594.
  Ito, M., Suzuki, J., Tsujioka, S., Sasaki, M., Gomori, A., Shirakura, T., Hirose, H., Ito, M., Ishihara, A., Iwaasa, H., and Kanatani, A. 2007. Longitudinal analysis of murine steatohepatitis model induced by chronic exposure to high‐fat diet. Hepatol. Res. 37:50‐57. doi: 10.1111/j.1872‐034X.2007.00008.x.
  James, O.F., and Day, C.P. 1998. Non‐alcoholic steatohepatitis. (NASH): A disease of emerging identity and importance. J. Hepatol. 29:495‐501. doi: 10.1016/S0168‐8278(98)80073‐1.
  Jeong, W.I., Jeong, D.H., Do, S.H., Kim, Y.K., Park, H.Y., Kwon, O.D., Kim, T.H., and Jeong, K.S. 2005. Mild hepatic fibrosis in cholesterol and sodium cholate diet‐fed rats. J. Vet. Med. Sci. 67:235‐242. doi: 10.1292/jvms.67.235.
  Joy, T., Cao, H., Black, G., Malik, R., Charlton‐Menys, V., Hegele, R.A., and Durrington, P.N. 2007. Alstrom syndrome (OMIM 203800): A case report and literature review. Orphanet. J. Rare Dis. 2:49. doi: 10.1186/1750‐1172‐2‐49.
  Kampschulte, M., Stockl, C., Langheinrich, A.C., Althohn, U., Bohle, R.M., Krombach, G.A., Stieger, P., Churin, Y., Kremer, S., Dierkes, C., Rath, T., Roeb, E., and Roderfeld, M. 2014. Western diet in ApoE‐LDLR double‐deficient mouse model of atherosclerosis leads to hepatic steatosis, fibrosis, and tumorigenesis. Lab. Invest. 94:1273‐1282. doi: 10.1038/labinvest.2014.112.
  Kanuri, G., and Bergheim, I. 2013. In vitro and in vivo models of non‐alcoholic fatty liver disease (NAFLD). Int. J. Mol. Sci. 14:11963‐11980. doi: 10.3390/ijms140611963.
  Katsura, A., Morishita, A., Iwama, H., Tani, J., Sakamoto, T., Tatsuta, M., Toyota, Y., Fujita, K., Kato, K., Maeda, E., Nomura, T., Miyoshi, H., Yoneyama, H., Himoto, T., Fujiwara, S., Kobara, H., Mori, H., Niki, T., Ono, M., Hirashima, M., and Masaki, T. 2015. MicroRNA profiles following metformin treatment in a mouse model of non‐alcoholic steatohepatitis. Int. J. Mol. Med. 35:877‐884. doi: 10.3892/ijmm.2015.2092.
  Kelley, G.L., Allan, G., and Azhar, S. 2004. High dietary fructose induces a hepatic stress response resulting in cholesterol and lipid dysregulation. Endocrinology 145:548‐555. doi: 10.1210/en.2003‐1167.
  Khan, F.Z., Perumpail, R.B., Wong, R.J., and Ahmed, A. 2015. Advances in hepatocellular carcinoma: Nonalcoholic steatohepatitis‐related hepatocellular carcinoma. World J. Hepatol. 7:2155‐2161. doi: 10.4254/wjh.v7.i18.2155.
  Kirsch, R., Clarkson, V., Shephard, E.G., Marais, D.A., Jaffer, M.A., Woodburne, V.E., Kirsch, R.E., and de la M Hall, P. 2003. Rodent nutritional model of non‐alcoholic steatohepatitis: Species, strain and sex difference studies. J. Gastroenterol. Hepatol. 18:1272‐1282. doi: 10.1046/j.1440‐1746.2003.03198.x.
  Kohli, R., Kirby, M., Xanthakos, S.A., Softic, S., Feldstein, A.E., Saxena, V., Tang, P.H., Miles, L., Miles, M.V., Balistreri, W.F., Woods, S.C., and Seeley, R.J. 2010. High‐fructose, medium chain trans fat diet induces liver fibrosis and elevates plasma coenzyme Q9 in a novel murine model of obesity and nonalcoholic steatohepatitis. Hepatology 52:934‐944. doi: 10.1002/hep.23797.
  Kudo, H., Yata, Y., Takahara, T., Kawai, K., Nakayama, Y., Kanayama, M., Oya, T., Morita, S., Sasahara, M., Mann, D.A., and Sugiyama, T. 2009. Telmisartan attenuates progression of steatohepatitis in mice: Role of hepatic macrophage infiltration and effects on adipose tissue. Liver Int. 29:988‐996. doi: 10.1111/j.1478‐3231.2009.02006.x.
  Lassailly, G., Caiazzo, R., Pattou, F., and Mathurin, P. 2013. Bariatric surgery for curing NASH in the morbidly obese? J. Hepatol. 58:1249‐1251. doi: 10.1016/j.jhep.2012.12.026.
  Lassailly, G., Caiazzo, R., Buob, D., Pigeyre, M., Verkindt, H., Labreuche, J., Raverdy, V., Leteurtre, E., Dharancy, S., Louvet, A., Romon, M., Duhamel, A., Pattou, F., and Mathurin, P. 2015. Bariatric surgery reduces features of nonalcoholic steatohepatitis in morbidly obese patients. Gastroenterology 149:379‐388. doi: 10.1053/j.gastro.2015.04.014.
  Leclercq, I.A., Farrell, G.C., Schriemer, R., and Robertson, G.R. 2002. Leptin is essential for the hepatic fibrogenic response to chronic liver injury. J. Hepatol. 37:206‐213. doi: 10.1016/S0168‐8278(02)00102‐2.
  Lim, J.S., Mietus‐Snyder, M., Valente, A., Schwarz, J.M., and Lustig, R.H. 2010. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat. Rev. Gastroenterol. Hepatol. 7:251‐264. doi: 10.1038/nrgastro.2010.41.
  Lin, C.W., Zhang, H., Li, M., Xiong, X., Chen, X., Chen, X., Dong, X.C., and Yin, X.M. 2013. Pharmacological promotion of autophagy alleviates steatosis and injury in alcoholic and non‐alcoholic fatty liver conditions in mice. J. Hepatol. 58:993‐999. doi: 10.1016/j.jhep.2013.01.011.
  Lindstrom, P. 2007. The physiology of obese‐hyperglycemic mice [ob/ob mice]. Sci. World J. 7:666‐685. doi: 10.1100/tsw.2007.117.
  Marchesini, G., Brizi, M., Bianchi, G., Tomassetti, S., Zoli, M., and Melchionda, N. 2001. Metformin in non‐alcoholic steatohepatitis. Lancet 358:893‐894. doi: 10.1016/S0140‐6736(01)06042‐1.
  Marchesini, G., Bugianesi, E., Forlani, G., Cerrelli, F., Lenzi, M., Manini, R., Natale, S., Vanni, E., Villanova, N., Melchionda, N., and Rizzetto, M. 2003. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 37:917‐923. doi: 10.1053/jhep.2003.50161.
  Marshall, J.D., Maffei, P., Beck, S., Barrett, T.G., and Paisey, R.B. 2011. Clinical utility gene card for: Alström syndrome. Eur. J. Hum. Genet. 19. doi: 10.1038/ejhg.2011.72.
  Matsuzawa, N., Takamura, T., Kurita, S., Misu, H., Ota, T., Ando, H., Yokoyama, M., Honda, M., Zen, Y., Nakanuma, Y., Miyamoto, K., and Kaneko, S. 2007. Lipid‐induced oxidative stress causes steatohepatitis in mice fed an atherogenic diet. Hepatology 46:1392‐1403. doi: 10.1002/hep.21874.
  Musso, G., Gambino, R., Cassader, M., and Pagano, G. 2010. A meta‐analysis of randomized trials for the treatment of nonalcoholic fatty liver disease. Hepatology 52:79‐104. doi: 10.1002/hep.23623.
  Nakagawa, H. 2015. Recent advances in mouse models of obesity‐ and nonalcoholic steatohepatitis‐associated hepatocarcinogenesis. World J. Hepatol. 7:2110‐2118. doi: 10.4254/wjh.v7.i17.2110.
  Nakayama, H., Otabe, S., Ueno, T., Hirota, N., Yuan, X., Fukutani, T., Hashinaga, T., Wada, N., and Yamada, K. 2007. Transgenic mice expressing nuclear sterol regulatory element‐binding protein 1c in adipose tissue exhibit liver histology similar to nonalcoholic steatohepatitis. Metabolism 56:470‐475. doi: 10.1016/j.metabol.2006.11.004.
  Nan, Y.M., Wu, W.J., Fu, N., Liang, B.L., Wang, R.Q., Li, L.X., Zhao, S.X., Zhao, J.M., and Yu, J. 2009. Antioxidants vitamin E and 1‐aminobenzotriazole prevent experimental non‐alcoholic steatohepatitis in mice. Scand. J. Gastroenterol. 44:1121‐1131. doi: 10.1080/00365520903114912.
  Neuschwander‐Tetri, B.A. 2010. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: The central role of nontriglyceride fatty acid metabolites. Hepatology 52:774‐788. doi: 10.1002/hep.23719.
  Ni, Y., Nagashimada, M., Zhuge, F., Zhan, L., Nagata, N., Tsutsui, A., Nakanuma, Y., Kaneko, S., and Ota, T. 2015. Astaxanthin prevents and reverses diet‐induced insulin resistance and steatohepatitis in mice: A comparison with vitamin E. Sci. Rep. 5:17192. doi: 10.1038/srep17192.
  Nordenstedt, H., White, D.L., and El‐Serag, H.B. 2010. The changing pattern of epidemiology in hepatocellular carcinoma. Dig. Liver Dis. 42:S206‐S214. doi: 10.1016/S1590‐8658(10)60507‐5.
  Omagari, K., Kato, S., Tsuneyama, K., Inohara, C., Kuroda, Y., Tsukuda, H., Fukazawa, E., Shiraishi, K., and Mune, M. 2008. Effects of a long‐term high‐fat diet and switching from a high‐fat to low‐fat, standard diet on hepatic fat accumulation in Sprague‐Dawley rats. Dig. Dis. Sci. 53:3206‐3212. doi: 10.1007/s10620‐008‐0303‐1.
  Ota, T., Takamura, T., Kurita, S., Matsuzawa, N., Kita, Y., Uno, M., Akahori, H., Misu, H., Sakurai, M., Zen, Y., Nakanuma, Y., and Kaneko, S. 2007. Insulin resistance accelerates a dietary rat model of nonalcoholic steatohepatitis. Gastroenterology 132:282‐293. doi: 10.1053/j.gastro.2006.10.014.
  Ouyang, X., Cirillo, P., Sautin, Y., McCall, S., Bruchette, J.L., Diehl, A.M., Johnson, R.J., and Abdelmalek, M.F. 2008. Fructose consumption as a risk factor for non‐alcoholic fatty liver disease. J. Hepatol. 48:993‐999. doi: 10.1016/j.jhep.2008.02.011.
  Ozturk, Z.A., and Kadayifci, A. 2014. Insulin sensitizers for the treatment of non‐alcoholic fatty liver disease. World J. Hepatol. 6:199‐206. doi: 10.4254/wjh.v6.i4.199.
  Peverill, W., Powell, L.W., and Skoien, R. 2014. Evolving concepts in the pathogenesis of NASH: Beyond steatosis and inflammation. Int. J. Mol. Sci. 15:8591‐8638. doi: 10.3390/ijms15058591.
  Potter, J.J., Womack, L., Mezey, E., and Anania, F.A. 1998. Transdifferentiation of rat hepatic stellate cells results in leptin expression. Biochem. Biophys. Res. Commun. 244:178‐182. doi: 10.1006/bbrc.1997.8193.
  Ramachandrappa, S., and Farooqi, I.S. 2011. Genetic approaches to understanding human obesity. J. Clin. Invest. 121:2080‐2086. doi: 10.1172/JCI46044.
  Ratziu, V. 2013. Pharmacological agents for NASH. Nat. Rev. Gastroenterol. Hepatol. 10:676‐685. doi: 10.1038/nrgastro.2013.193.
  Ratziu, V., Giral, P., Jacqueminet, S., Charlotte, F., Hartemann‐Heurtier, A., Serfaty, L., Podevin, P., Lacorte, J.M., Bernhardt, C., Bruckert, E., Grimaldi, A., Poynard, T., and Group, L.S. 2008. Rosiglitazone for nonalcoholic steatohepatitis: One‐year results of the randomized placebo‐controlled Fatty Liver Improvement with Rosiglitazone Therapy (FLIRT) Trial. Gastroenterology 135:100‐110. doi: 10.1053/j.gastro.2008.03.078.
  Ratziu, V., Goodman, Z., and Sanyal, A. 2015. Current efforts and trends in the treatment of NASH. J. Hepatol. 62:S65‐S75. doi: 10.1016/j.jhep.2015.02.041.
  Rinella, M.E., Elias, M.S., Smolak, R.R., Fu, T., Borensztajn, J., and Green, R.M. 2008. Mechanisms of hepatic steatosis in mice fed a lipogenic methionine choline‐deficient diet. J. Lipid Res. 49:1068‐1076. doi: 10.1194/jlr.M800042‐JLR200.
  Rong, X., Li, Y., Ebihara, K., Zhao, M., Naowaboot, J., Kusakabe, T., Kuwahara, K., Murray, M., and Nakao, K. 2010. Angiotensin II type 1 receptor‐independent beneficial effects of telmisartan on dietary‐induced obesity, insulin resistance and fatty liver in mice. Diabetologia 53:1727‐1731. doi: 10.1007/s00125‐010‐1744‐6.
  Rosso, N., Chavez‐Tapia, N.C., Tiribelli, C., and Bellentani, S. 2014. Translational approaches: From fatty liver to non‐alcoholic steatohepatitis. World J. Gastroenterol. 20:9038‐9049. doi: 10.3748/wjg.v20.i27.9038.
  Sahai, A., Malladi, P., Pan, X., Paul, R., Melin‐Aldana, H., Green, R.M., and Whitington, P.F. 2004. Obese and diabetic db/db mice develop marked liver fibrosis in a model of nonalcoholic steatohepatitis: Role of short‐form leptin receptors and osteopontin. Am. J. Physiol. Gastrointest. Liver Physiol. 287:G1035‐1043. doi: 10.1152/ajpgi.00199.2004.
  Sanches, S.C., Ramalho, L.N., Augusto, M.J., da Silva, D.M., and Ramalho, F.S. 2015. Nonalcoholic steatohepatitis: A search for factual animal models. Biomed. Res. Int. 2015:Article ID 574832. doi: 10.1155/2015/574832
  Sanyal, A.J., Chalasani, N., Kowdley, K.V., McCullough, A., Diehl, A.M., Bass, N.M., Neuschwander‐Tetri, B.A., Lavine, J.E., Tonascia, J., Unalp, A., Van Natta, M., Clark, J., Brunt, E.M., Kleiner, D.E., Hoofnagle, J.H., Robuck, P.R., and Nash, C.R.N. 2010. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med. 362:1675‐1685. doi: 10.1056/NEJMoa0907929.
  Schierwagen, R., Maybuchen, L., Zimmer, S., Hittatiya, K., Back, C., Klein, S., Uschner, F.E., Reul, W., Boor, P., Nickenig, G., Strassburg, C.P., Trautwein, C., Plat, J., Lutjohann, D., Sauerbruch, T., Tacke, F., and Trebicka, J. 2015. Seven weeks of Western diet in apolipoprotein‐E‐deficient mice induce metabolic syndrome and non‐alcoholic steatohepatitis with liver fibrosis. Sci. Rep. 5:12931. doi: 10.1038/srep12931.
  Shimano, H., Amemiya‐Kudo, M., Takahashi, A., Kato, T., Ishikawa, M., and Yamada, N. 2007. Sterol regulatory element‐binding protein‐1c and pancreatic β‐cell dysfunction. Diabetes Obes. Metab. 2:133‐139. doi: 10.1111/j.1463‐1326.2007.00779.x.
  Shimomura, I., Hammer, R.E., Richardson, J.A., Ikemoto, S., Bashmakov, Y., Goldstein, J.L., and Brown, M.S. 1998. Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP‐1c in adipose tissue: Model for congenital generalized lipodystrophy. Genes Dev. 12:3182‐3194. doi: 10.1101/gad.12.20.3182.
  Spruss, A., Kanuri, G., Wagnerberger, S., Haub, S., Bischoff, S.C., and Bergheim, I. 2009. Toll‐like receptor 4 is involved in the development of fructose‐induced hepatic steatosis in mice. Hepatology 50:1094‐1104. doi: 10.1002/hep.23122.
  Starkel, P., and Leclercq, I.A. 2011. Animal models for the study of hepatic fibrosis. Best Pract. Res. Clin. Gastroenterol. 25:319‐333. doi: 10.1016/j.bpg.2011.02.004.
  Subramanian, S., Goodspeed, L., Wang, S., Kim, J., Zeng, L., Ioannou, G.N., Haigh, W.G., Yeh, M.M., Kowdley, K.V., O'Brien, K.D., Pennathur, S., and Chait, A. 2011. Dietary cholesterol exacerbates hepatic steatosis and inflammation in obese LDL receptor‐deficient mice. J. Lipid Res. 52:1626‐1635. doi: 10.1194/jlr.M016246.
  Sweeney, G. 2002. Leptin signalling. Cell. Signal. 14:655‐663. doi: 10.1016/S0898‐6568(02)00006‐2.
  Tajima, K., Nakamura, A., Shirakawa, J., Togashi, Y., Orime, K., Sato, K., Inoue, H., Kaji, M., Sakamoto, E., Ito, Y., Aoki, K., Nagashima, Y., Atsumi, T., and Terauchi, Y. 2013. Metformin prevents liver tumorigenesis induced by high‐fat diet in C57Bl/6 mice. Am. J. Physiol. Endocrinol. Metab. 305:E987‐E998. doi: 10.1152/ajpendo.00133.2013.
  Than, N.N., and Newsome, P.N. 2015. A concise review of non‐alcoholic fatty liver disease. Atherosclerosis 239:192‐202. doi: 10.1016/j.atherosclerosis.2015.01.001.
  Tilg, H., and Moschen, A.R. 2010. Evolution of inflammation in nonalcoholic fatty liver disease: The multiple parallel hits hypothesis. Hepatology 52:1836‐1846. doi: 10.1002/hep.24001.
  Tritos, N.A., and Mantzoros, C.S. 1997. Leptin: Its role in obesity and beyond. Diabetologia 40:1371‐1379. doi: 10.1007/s001250050838.
  Verbeek, J., Cassiman, D., Lannoo, M., Laleman, W., van der Merwe, S., Verslype, C., Van Steenbergen, W., and Nevens, F. 2013. Treatment of non‐alcoholic fatty liver disease: Can we already face the epidemic? Acta. Gastroenterol. Belg. 76:200‐209.
  Verbeek, J., Jacobs, A., Spincemaille, P., and Cassiman, D. 2016. The development of a representative mouse model with non‐alcoholic steatohepatitis. Curr. Protoc. Mouse Biol. 6:201‐210. doi: 10.1002/cpmo.1.
  Verbeek, J., Lannoo, M., Pirinen, E., Ryu, D., Spincemaille, P., Vander Elst, I., Windmolders, P., Thevissen, K., Cammue, B.P., van Pelt, J., Fransis, S., Van Eyken, P., Ceuterick‐De Groote, C., Van Veldhoven, P.P., Bedossa, P., Nevens, F., Auwerx, J., and Cassiman, D. 2015. Roux‐en‐y gastric bypass attenuates hepatic mitochondrial dysfunction in mice with non‐alcoholic steatohepatitis. Gut 64:673‐683. doi: 10.1136/gutjnl‐2014‐306748.
  Vernon, G., Baranova, A., and Younossi, Z.M. 2011. Systematic review: The epidemiology and natural history of non‐alcoholic fatty liver disease and non‐alcoholic steatohepatitis in adults. Aliment Pharmacol. Ther. 34:274‐285. doi: 10.1111/j.1365‐2036.2011.04724.x.
  Vilar‐Gomez, E., Martinez‐Perez, Y., Calzadilla‐Bertot, L., Torres‐Gonzalez, A., Gra‐Oramas, B., Gonzalez‐Fabian, L., Friedman, S.L., Diago, M., and Romero‐Gomez, M. 2015. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology 149:367‐378.e5. doi: 10.1053/j.gastro.2015.04.005.
  Wada, T., Miyashita, Y., Sasaki, M., Aruga, Y., Nakamura, Y., Ishii, Y., Sasahara, M., Kanasaki, K., Kitada, M., Koya, D., Shimano, H., Tsuneki, H., and Sasaoka, T. 2013. Eplerenone ameliorates the phenotypes of metabolic syndrome with NASH in liver‐specific SREBP‐1c Tg mice fed high‐fat and high‐fructose diet. Am. J. Physiol. Endocrinol. Metab. 305:E1415‐E1425. doi: 10.1152/ajpendo.00419.2013.
  Wang, B., Chandrasekera, P.C., and Pippin, J.J. 2014. Leptin‐ and leptin receptor‐deficient rodent models: Relevance for human type 2 diabetes. Curr. Diabetes Rev. 10:131‐145. doi: 10.2174/1573399810666140508121012.
  Weltman, M.D., Farrell, G.C., and Liddle, C. 1996. Increased hepatocyte CYP2E1 expression in a rat nutritional model of hepatic steatosis with inflammation. Gastroenterology 111:1645‐1653. doi: 10.1016/S0016‐5085(96)70028‐8.
  Woo, S.L., Xu, H., Li, H., Zhao, Y., Hu, X., Zhao, J., Guo, X., Guo, T., Botchlett, R., Qi, T., Pei, Y., Zheng, J., Xu, Y., An, X., Chen, L., Chen, L., Li, Q., Xiao, X., Huo, Y., and Wu, C. 2014. Metformin ameliorates hepatic steatosis and inflammation without altering adipose phenotype in diet‐induced obesity. PLoS One 9:e91111. doi: 10.1371/journal.pone.0091111.
  Wortham, M., He, L., Gyamfi, M., Copple, B.L., and Wan, Y.J. 2008. The transition from fatty liver to NASH associates with SAMe depletion in db/db mice fed a methionine choline‐deficient diet. Dig. Dis. Sci. 53:2761‐2774. doi: 10.1007/s10620‐007‐0193‐7.
  Yang, S.Q., Lin, H.Z., Lane, M.D., Clemens, M., and Diehl, A.M. 1997. Obesity increases sensitivity to endotoxin liver injury: Implications for the pathogenesis of steatohepatitis. Proc. Natl. Acad. Sci. U.S.A. 94:2557‐2562. doi: 10.1073/pnas.94.6.2557.
  Yokohama, S., Yoneda, M., Haneda, M., Okamoto, S., Okada, M., Aso, K., Hasegawa, T., Tokusashi, Y., Miyokawa, N., and Nakamura, K. 2004. Therapeutic efficacy of an angiotensin II receptor antagonist in patients with nonalcoholic steatohepatitis. Hepatology 40:1222‐1225. doi: 10.1002/hep.20420.
  Yoo, N.Y., Jeon, S., Nam, Y., Park, Y.J., Won, S.B., and Kwon, Y.H. 2015. Dietary supplementation of genistein alleviates liver inflammation and fibrosis mediated by a methionine‐choline‐deficient diet in db/db mice. J. Agric. Food Chem. 63:4305‐4311. doi: 10.1021/acs.jafc.5b00398.
  Zhang, Y., Hufnagel, C., Eiden, S., Guo, K.Y., Diaz, P.A., Leibel, R., and Schmidt, I. 2001. Mechanisms for LEPR‐mediated regulation of leptin expression in brown and white adipocytes in rat pups. Physiol. Genomics 4:189‐199.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library