Methodological Considerations for Optimizing and Validating Behavioral Assays

Stacey J. Sukoff Rizzo1, Jill L. Silverman2

1 Mouse Neurobehavioral Phenotyping Facility, Center for Biometric Analysis, The Jackson Laboratory, Bar Harbor, Maine, 2 MIND Institute and Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, California
Publication Name:  Current Protocols in Mouse Biology
Unit Number:   
DOI:  10.1002/cpmo.17
Online Posting Date:  December, 2016
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Preclinical animal models are indispensable tools for translational research for which behavioral characterization and phenotyping are essential to testing hypotheses and for evaluating the potential of novel therapeutic agents to treat diseases. The methods employed for comprehensive behavioral phenotyping and pharmacological experiments are complex and should be conducted exclusively by trained technicians with demonstrated proficiency. The ultimate goal is to identify disease‐relevant and translational behavioral endpoints that are robust, reliable, and reproducible, and that can be employed to evaluate potential of novel therapeutic agents to treat disease. The intent of the present article is to provide a pragmatic outline for establishing and optimizing behavioral assays and phenotyping batteries, ensuring that the assays and the data are reliable such that they can be reproduced within and across technicians and laboratories and, more importantly, that the data is translatable to the clinic. © 2016 by John Wiley & Sons, Inc.

Keywords: assay validation; animal models; behavior; behavioral testing; mouse; pharmacology; phenotyping; reproducibility

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Materials
  • Methods
  • Data Analysis
  • Summary
  • Acknowledgments
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
  Bourin, M., Poncelet, M., Chermat, R., and Simon, P. 1983. The value of the reserpine test in psychopharmacology. Arzneimittelforschung 33:1173‐1176.
  Brown, J.W., Rueter, L.E., and Zhang, M. 2014. Predictive validity of a MK‐801‐induced cognitive impairment model in mice: Implications on the potential limitations and challenges of modeling cognitive impairment associated with schizophrenia preclinically. Prog. Neuropsychopharmacol. Biol. Psychiatry 49:53‐62. doi:10.1016/j.pnpbp.2013.11.008.
  Bryant, C.D., Zhang, N.N., Sokoloff, G., Fanselow, M.S., Ennes, H.S., Palmer, A.A., and McRoberts, J.A. 2008. Behavioral Differences among C57BL/6 Substrains: Implications for Transgenic and Knockout Studies. J. Neurogenet. 22:315‐331. doi:10.1080/01677060802357388.
  Buccafusco, J. J. 2009. Methods of Behavior Analysis in Neuroscience, 2nd ed. CRC Press, Boca Raton, Fla.
  Castagné, V., Porsolt, R.D., and Moser, P. 2009. Use of latency to immobility improves detection of antidepressant‐like activity in the behavioral despair test in the mouse. Eur. J. Pharmacol. 616:128‐133. doi: 10.1016/j.ejphar.2009.06.018.
  Castro, C.A., Hogan, J.B., Benson, K.A., and Shehata, C.W., and Landauer, M.R. 1995. Behavioral effects of vehicles: DMSO, ethanol, Tween‐20, Tween‐80, and emulphor‐620. Pharmacol. Biochem. Behav. 50:521‐526. doi: 10.1016/0091‐3057(94)00331‐9.
  Colucci, M., Maione, F., Bonito, M.C., Piscopo, A., Di Giannuario, A., and Pieretti, S. 2008. New insights of dimethyl sulphoxide effects (DMSO) on experimental in vivo models of nociception and inflammation. Pharmacol. Res. 57:419‐425. doi: 10.1016/j.phrs.2008.04.004.
  Crabbe, J.C., Wahlsten, D., and Dudek, B.C. 1999. Genetics of Mouse Behavior: Interactions with Laboratory Environment. Science 284:1670‐1672. doi: 10.1126/science.284.5420.1670.
  Crabbe, J.C., Metten, P., Cameron, A.J., and Wahlsten, D. 2005. An analysis of the genetics of alcohol intoxication in inbred mice. Neurosci. Biobehav. Rev. 28:785‐802. doi: 10.1016/j.neubiorev.2004.08.002.
  Crawley, J.N. 2007. What's Wrong with My Mouse? Behavioral Phenotyping of Transgenic and Knockout Mice, 2nd ed. Wiley‐Liss, New York.
  Crawley, J.N. and Paylor, R. 1997. A proposed test battery and constellations of specific behavioral paradigms to investigate the behavioral phenotypes of transgenic and knockout mice. Horm. Behav. 31:197‐211. doi: 10.1006/hbeh.1997.1382.
  Crawley, J.N., Belknap, J.K., Collins, A., Crabbe, J.C., Frankel, W., Henderson, N., Hitzemann, R.J., Maxson, S.C., Miner, L.L., Silva, A.J., Wehner, J.M., Wynshaw‐Boris, A., and Paylor, R. 1997. Behavioral phenotypes of inbred mouse strains: Implications and recommendations for molecular studies. Psychopharmacology 132:107‐124. doi: 10.1007/s002130050327.
  Cryan, J.F. and Dinan, T.G. 2012. Mind‐altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13:701‐712. doi: 10.1038/nrn3346.
  Cryan, J.F. and Mombereau, C. 2004. In search of a depressed mouse: Utility of models for studying depression‐related behavior in genetically modified mice. Mol. Psychiatry. 9:326‐357. doi: 10.1038/
  Cryan, J.F., Mombereau, C., and Vassout, A. 2005. The tail suspension test as a model for assessing antidepressant activity: Review of pharmacological and genetic studies in mice. Neurosci. Biobehav. Rev. 29:571‐625. doi: 10.1016/j.neubiorev.2005.03.009.
  Darmani, N.A., Martin, B.R., Pandey, U., and Glennon, R.A. 1990. Do functional relationships exist between 5‐HT1A and 5‐HT2 receptors? Pharmacol. Biochem. Behav. 36:901‐906. doi: 10.1016/0091‐3057(90)90098‐3.
  De Aceto, M.D., Mackean, D.B., and Pearl, J. 1969. Effects of opiates and opiate antagonists on the straub tail reaction in mice. Br. J. Pharmacol. 36:255. doi: 10.1111/j.1476‐5381.1969.tb09500.x.
  Ding, M., Turner, A.J., Ramkumar, V., Hughes, L.F., Trammell, R.A., and Toth, L.A. 2010. Lack of association of a spontaneous mutation of the Chrm2 gene with behavioral and physiologic phenotypic differences in inbred mice. Comp. Med. 60:272‐281.
  Dunn, A.J. and Swiergiel, A.H. 2005. Effects of interleukin‐1 and endotoxin in the forced swim and tail suspension tests in mice. Pharmacol. Biochem. Behav. 81:688‐693. doi: 10.1016/j.pbb.2005.04.019.
  Dyer, R.S. and Weldon, D.A. 1975. Blindness‐induced hyperactivity in several strains of mice. Physiol. Behav. 15:439‐441. doi: 10.1016/0031‐9384(75)90211‐5.
  Everitt, J.I. and Foster, P.M.D. 2004. Laboratory animal science issues in the design and conduct of studies with endocrine‐active compounds. ILAR J. 45:417‐424. doi: 10.1093/ilar.45.4.417.
  Fuchs, H., Gailus‐Durner, V., Adler, T., Aguilar‐Pimentel, J.A., Becker, L., Calzada‐Wack, J., Da Silva‐Buttkus, P., Neff, F., Götz, A., Hans, W., Hölter, S.M., Horsch, M., Kastenmüller, G., Kemter, E., Lengger, C., Maier, H., Matloka, M., Möller, G., Naton, B., Prehn, C., Puk, O., Rácz, I., Rathkolb, B., Römisch‐Margl, W., Rozman, J., Wang‐Sattler, R., Schrewe, A., Stöger, C., Tost, M., Adamski, J., Aigner, B., Beckers, J., Behrendt, H., Busch, D.H., Esposito, I., Graw, J., Illig, T., Ivandic, B., Klingenspor, M., Klopstock, T., Kremmer, E., Mempel, M., Neschen, S., Ollert, M., Schulz, H., Suhre, K., Wolf, E., Wurst, W., Zimmer, A., and Hrabě de Angelis, M. 2011. Mouse phenotyping. Methods 53:120‐135. doi: 10.1016/j.ymeth.2010.08.006.
  Griebel, G., Misslin, R., Pawlowski, M., and Vogel E. 1991. Meta‐chlorophenylpiperazine enhances neophobic and anxious behavior in mice. Neuroreport 2:627‐629. doi: 10.1097/00001756‐199110000‐00019.
  Griebel, G., Belzung, C., Perrault, G., and Sanger, D.J. 2000. Differences in anxiety‐related behaviours and in sensitivity to diazepam in inbred and outbred strains of mice. Psychopharmacology 148:164‐170. doi: 10.1007/s002130050038.
  Haberzettl, R., Fink, H., and Bert, B. 2014. Role of 5‐HT(1A)‐ and 5‐HT(2A) receptors for the murine model of the serotonin syndrome. J. Pharmacol. Toxicol. Methods 70:129‐133. doi: 10.1016/j.vascn.2014.07.003.
  Kilkenny, C., Browne, W.J., Cuthill, I.C., Emerson, M., and Altman, D.G. 2010. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol. 8:e1000412. doi: 10.1371/journal.pbio.1000412.
  Kilkenny, C., Parsons, N., Kadyszewski, E., Festing, M.F.W., Cuthill, I.C., Fry, D., Hutton, J., and Altman, D.G. 2009. Survey of the quality of experimental design, statistical analysis and reporting of research using animals. PLoS ONE 4:e7824. doi:10.1371/journal.pone.0007824.
  Klinkenberg, I. and Blokland, A. 2010. The validity of scopolamine as a pharmacological model for cognitive impairment: A review of animal behavioral studies. Neurosci. Biobehav. Rev. 34: 1307‐1350. doi: 10.1016/j.neubiorev.2010.04.001.
  Landis, S.C., Amara, S.G., Asadullah, K., Austin, C.P., Blumenstein, R., Bradley, E.W., Crystal RG, Darnell RB, Ferrante RJ, Fillit H, Finkelstein R, Fisher M, Gendelman HE, Golub, R.M., Goudreau, J.L., Gross, R.A., Gubitz, A.K., Hesterlee, S.E., Howells, D.W., Huguenard, J., Kelner, K., Koroshetz, W., Krainc, D., Lazic, S.E., Levine, M.S., Macleod, M.R., McCall, J.M., Moxley, R.T., Narasimhan, K., Noble, L. J., Perrin, S., Porter, J. D., Steward, O., Unger, E., Utz, U., and Silberberg, S.D. 2012. A call for transparent reporting to optimize the predictive value of preclinical research. Nature 490:187‐191. doi: 10.1038/nature11556.
  Lin, H.Q., Burden, P.M., and Johnston, G.A.R. 1998. Propylene glycol elicits anxiolytic‐like responses to the elevated plus‐maze in male mice. J. Pharm. Pharmacol. 50:1127‐1131. doi: 10.1111/j.2042‐7158.1998.tb03323.x.
  Mandillo, S., Tucci, V., Holter, S.M., Meziane, H., Banchaabouchi, M.A., Kallnik, M., Lad, H.V., Nolan, P.M., Ouagazzal, A.M., Coghill, E.L., Gale, K., Golini, E., Jacquot, S., Krezel, W., Parker, A., Riet, F., Schneider, I., Marazziti, D., Auwerx, J., Brown, S.D., Chambon, P., Rosenthal, N., Tocchini‐Valentini, G., and Wurst, W. 2008. Reliability, robustness, and reproducibility in mouse behavioral phenotyping: A cross‐laboratory study. Physiol. Genomics 34:243‐255. doi: 10.1152/physiolgenomics.90207.2008.
  McIlwain, K.L., Merriweather, M.Y., Yuva‐Paylor, L.A., and Paylor, R. 2001. The use of behavioral test batteries: Effects of training history. Physiol. Behav. 73:705‐717. doi: 10.1016/S0031‐9384(01)00528‐5.
  Meisenberg, G. and Simmons, W. H. 1982. Behavioral effects of intracerebroventricularly administered neurohypophyseal hormone analogs in mice. Pharmacol. Biochem. Behav. 16:819‐825. doi: 10.1016/0091‐3057(82)90242‐8.
  Mogil, J.S., Kest, B., Sadowski, B., and Belknap, J.K. 1996. Differential genetic mediation of sensitivity to morphine in genetic models of opiate antinociception: Influence of nociceptive assay. J. Pharmacol. Exp. Ther. 276(2):532‐544.
  Moy, S.S., Nonneman, R.J., Shafer, G.O., Nikolova, V.D., Riddick, N.V., Agster, K.L., Baker, L.K., and Knapp, D.J. 2013. Disruption of social approach by MK‐801, amphetamine, and fluoxetine in adolescent C57BL/6J mice. Neurotoxicol. Teratol. 36:36‐46. doi: 10.1016/
  Nath, C., Gupta M.B., Pantaik, G. K., and Dhawan, K. N. 1994. Morphine‐induced straub tail response: Mediated by central μ2‐opioid receptor. Eur. J. Pharmacol. 263:203‐205. doi: 10.1016/0014‐2999(94)90543‐6.
  Obernier, J.A. and Baldwin, R.L. 2006. Establishing an appropriate period of acclimatization following transportation of laboratory animals. ILAR J. 47:364‐369. doi: 10.1093/ilar.47.4.364.
  Olsson, I.A. and Dahlborn, K. 2002. Improving housing conditions for laboratory mice: A review of “environmental enrichment”. Lab. Anim. 36:243‐270. doi: 10.1258/002367702320162379.
  Oswald, S. and Balice‐Gordon, R. 2014. Rigor or mortis: Best practices for preclinical research in neuroscience. Neuron 84:572‐581. doi: 10.1016/j.neuron.2014.10.042.
  Paylor, R., Spencer, C.M., Yuva‐Paylor, L.A., and Pieke‐Dahl, S. 2006. The use of behavioral test batteries, II: Effect of test interval. Physiol. Behav. 87:95‐102. doi: 10.1016/j.physbeh.2005.09.002.
  Ralph, R.J., Paulus, M.P., and Geyer, M.A. 2001. Strain‐specific effects of amphetamine on prepulse inhibition and patterns of locomotor behavior in mice. J. Pharmacol. Exp. Ther. 298:148‐155.
  Rasmussen, S., Glickman, G., Norinsky, R., Quimby, F.W., and Tolwani, R.J. 2009. Construction noise decreases reproductive efficiency in mice. J. Am. Assoc. Lab. Anim. Sci. 48:363‐370.
  Rivers‐Auty, J. and Ashton, J.C. 2013. Vehicles for lipophilic drugs: Implications for experimental design, neuroprotection, and drug discovery. Curr. Neurovasc. Res. 10:356‐360. doi: 10.2174/15672026113109990021.
  Rizzo, S.J., Edgerton, J.R., Hughes, Z.A., and Brandon, N.J. 2013. Future viable models of psychiatry drug discovery in pharma. J. Biomol. Screen. 18:509‐521. doi: 10.1177/1087057113475871.
  Rodgers, R.J., Cole, J.C., Aboualfa, K., and Stephenson, L.H. 1995. Ethopharmacological analysis of the effects of putative ‘anxiogenic’ agents in the mouse elevated plus‐maze. Pharmacol. Biochem. Behav. 52:805‐813. doi: 10.1016/0091‐3057(95)00190‐8.
  Schellinck, H.M., Cyr, D.P., and Brown, R.E. 2010. How many ways can mouse behavioral experiments go wrong? Confounding variables in mouse models of neurodegenerative diseases and how to control them. Adv. Study Behav. 41:255‐366. doi: 10.1016/S0065‐3454(10)41007‐4.
  Schneider, I., Tirsch, W. S., Faus‐Kebler, T., Becker, L., Kling, E., Austin Busse, R. L., Bender, A., Feddersen, B., Tritschler, J., Fuchs, H., Gailus‐Durner, V., Englmeier, K‐H., Hrabé de Angelis, M., and Klopstock, T. 2006. Systematic, standardized and comprehensive neurological phenotyping of inbred mice strains in the German Mouse Clinic. J. Neurosci. Method 157:82‐90. doi: 10.1016/j.jneumeth.2006.04.002.
  Shepherd, J.K., Grewal, S.S., Fletcher, A., Bill, D. J., and Dourish, C.T. 1994. Behavioural and pharmacological characterisation of the elevated “zero‐maze” as an animal model of anxiety. Psychopharmacology 116:56‐64. doi: 10.1007/BF02244871.
  Silverman, J.L. and Crawley, J.N. 2014. The promising trajectory of autism therapeutics discovery. Drug. Discov. Today. 19:838‐844. doi: 10.1016/j.drudis.2013.12.007.
  Silverman, J.L., Smith, D.G., Rizzo, S.J., Karras, M.N., Turner, S.M., Tolu, S.S., Bryce, D.K., Smith, D.L., Fonseca, K., Ring, R.H., and Crawley, J.N. 2012. Negative allosteric modulation of the mGluR5 receptor reduces repetitive behaviors and rescues social deficits in mouse models of autism. Sci. Transl. Med. 4:131ra51. doi: 10.1126/scitranslmed.3003501.
  Simon MM, Greenaway S, White JK, Fuchs H, Gailus‐Durner V, Wells S, Sorg T, Wong K, Bedu E, Cartwright EJ, Dacquin R, Djebali S, Estabel J, Graw J, Ingham NJ, Jackson IJ, Lengeling A, Mandillo S, Marvel J, Meziane H, Preitner F, Puk O, Roux M, Adams DJ, Atkins S, Ayadi A, Becker L, Blake A, Brooker D, Cater H, Champy MF, Combe R, Danecek P, di Fenza A, Gates H, Gerdin AK, Golini E, Hancock JM, Hans W, Hölter SM, Hough T, Jurdic P, Keane TM, Morgan H, Müller W, Neff F, Nicholson G, Pasche B, Roberson LA, Rozman J, Sanderson M, Santos L, Selloum M, Shannon C, Southwell A, Tocchini‐Valentini GP, Vancollie VE, Westerberg H, Wurst W, Zi M, Yalcin B, Ramirez‐Solis R, Steel KP, Mallon AM, de Angelis MH, Herault Y, and Brown SD. 2013. A comparative phenotypic and genomic analysis of C57BL/6J and C57BL/6N mouse strains. Genome Biol. 14:R82. doi: 10.1186/gb‐2013‐14‐7‐r82.
  Sukoff Rizzo, S.J. 2016. Repetitive behavioral assessments for compound screening in mouse models of autism spectrum disorders. In Mouse Models for Drug Discovery (G. Proetzel and M. Wiles, eds.), Springer, New York. In press.
  Sukoff Rizzo, S.J., Neal, S.J., Hughes, Z A., Beyna, M., Rosenzweig‐Lipson, S., Moss, S.J., and Brandon, N.J. 2012. Evidence for sustained elevation of IL‐6 in the CNS as a key contributor of depressive‐like phenotypes. Transl. Psychiatry 2:e199. doi: 10.1038/tp.2012.120.
  Tricklebank, M.D. and Garner, J.P. 2012. The possibilities and limitations of animal models for psychiatric disorders. In Drug Discovery for Psychiatric Disorders (Z. Rankovic, M. Bingham, E.J. Nestler, and R. Hargreaves, eds.) pp. 534‐556. The Royal Society of Chemistry, London.
  Turner, C.A., Lewis, M.H., and King, M.A. 2003. Environmental enrichment: Effects on stereotyped behavior and dendritic morphology. Dev. Psychobiol. 43:20‐27. doi: 10.1002/dev.10116.
  Unger, E.F. 2008. All is not well in the world of translational research. J. Am. Coll. Cardiol. 50:738‐740. doi:10.1016/j.jacc.2007.04.067.
  van der Staay, F.J. and Steckler, T. 2002. The fallacy of behavioral phenotyping without standardisation. Genes Brain Behav. 1:9‐13. doi: 10.1046/j.1601‐1848.2001.00007.x.
  Varty, G.B., Walters, N., Cohen‐Williams, M., and Carey, G.J. 2001. Comparison of apomorphine, amphetamine and dizocilpine disruptions of prepulse inhibition in inbred and outbred mice strains. Eur. J. Pharmacol. 424:27‐36. doi: 10.1016/S0014‐2999(01)01115‐3.
  Wahlsten, D. 2010. Mouse Behavioral Testing: How to Use Mice in Behavioral Neuroscience, 1st ed. Academic Press, San Diego.
  Wahlsten, D., Metten, P., Phillips, T.J., Boehm, S.L., Burkhart‐Kasch, S., Dorow, J., Doerksen, S., Downing, C., Fogarty, J., Rodd‐Henricks, K., Hen, R., McKinnon, C.S., Merrill, C.M., Nolte, C., Schalomon, M., Schlumbohm, J.P., Sibert, J.R., Wenger, C.D., Dudek, B.C., and Crabbe, J.C. 2003. Different data from different labs: Lessons from studies of gene‐environment interaction. J. Neurobiol. 54:283‐311. doi: 10.1002/neu.10173.
  Würbel, H. 2000. Behaviour and the standardization fallacy. Nature Genet. 26:263. doi: 10.1038/81541.
  Würbel, H. 2002. Behavioural phenotyping enhanced: Beyond (environmental) standardization. Genes Brain Behav. 1:3‐8. doi: 10.1046/j.1601‐1848.2001.00006.x.
  Yamada, J., Sugimoto, Y., and Horisaka, K. 1988. The behavioural effects of 8‐hydroxy‐2‐(di‐n‐propylamino) tetralin (8‐OH‐DPAT) in mice. Eur. J. Pharmacol. 154:299‐304. doi: 10.1016/0014‐2999(88)90205‐1.
  Yang, M., Silverman, J.L., and Crawley, J.N. 2011. Automated three‐chambered social approach task for mice. Curr. Protoc. Neurosci. 56:8.26.1‐8.26.16. doi: 10.1002/0471142301.ns0826s56.
  Yang, M., Perry, K., Weber, M.D., Katz, A.M., and Crawley, J.N. 2011. Social peers rescue autism‐relevant sociability deficits in adolescent mice. Autism Res. 4:17‐27. doi: 10.1002/aur.163.
  Yonekawa, W.D., Kupferberg, H.J., and Woodbury, D.M. 1980. Relationship between pentylenetetrazol‐induced seizures and brain pentylenetetrazol levels in mice. J. Pharmacol. Exp. Ther. 214:589‐593.
PDF or HTML at Wiley Online Library