Measurement of Behavioral Taste Responses in Mice: Two‐Bottle Preference, Lickometer, and Conditioned Taste‐Aversion Tests

Dany Gaillard1, Jennifer M. Stratford1

1 Department of Cell and Developmental Biology and the Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
Publication Name:  Current Protocols in Mouse Biology
Unit Number:   
DOI:  10.1002/cpmo.18
Online Posting Date:  December, 2016
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


The natural like and dislike of foods based on taste is one of the most easily observed behaviors in animals. Animals eat palatable foods and reject aversive foods, which makes measurement of taste perception possible using various behavioral techniques. Three different methods to accurately measure taste behavior are described here. First, two‐bottle preference tests evaluate whether a taste compound (tastant) is preferred over water. Second, lickometer tests quantify the like and dislike for multiple concentrations of the same tastant or multiple tastants at the same time. Finally, conditioned taste aversion tests accurately determine the perceived taste threshold for palatable tastants. Together, these diverse methods enable researchers to observe and measure behavioral taste responses in mice to any tastant. © 2016 by John Wiley & Sons, Inc.

Keywords: conditioned taste aversion; lickometer; two‐bottle preference test; taste discrimination; taste behavior; taste threshold

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Strategic Planning
  • Basic Protocol 1: The Short‐Term Two‐Bottle Preference Test
  • Alternate Protocol 1: The Long‐Term Two‐Bottle Preference Test
  • Basic Protocol 2: The Lickometer Test
  • Basic Protocol 3: The Conditioned Taste Aversion Test Using a Two‐Bottle Paradigm
  • Alternate Protocol 2: The Conditioned Taste Aversion Test Using a Lickometer Paradigm
  • Commentary
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


Basic Protocol 1: The Short‐Term Two‐Bottle Preference Test

  • Mouse subjects in home cages
  • Deionized water
  • Tastant solution(s) in deionized water
  • 25‐ml plastic serological pipets with 0.2‐ml gradations
  • Fine handsaw blade or similar
  • Silicone tubing (7.94 mm i.d., 12.8 mm o.d.)
  • Scissors or a sharp cutting tool
  • Stainless steel sipper tubes (≥45 mm long, 7.94 mm o.d., ∼2‐3 mm hole diameter)
  • Rubber stoppers (size 000)

Alternate Protocol 1: The Long‐Term Two‐Bottle Preference Test

  • Mouse subjects
  • Deionized water
  • Tastant(s) to be tested
  • Davis Rig MS‐160 lickometer with accessories and software (DiLog Instruments)
  • Sound‐proof chamber (optional)
  • Fan (optional; to mask potential tastant smells)
  • Microsoft Excel

Basic Protocol 2: The Lickometer Test

  • 225 mM LiCl (Sigma‐Aldrich, cat. no. 310468)
  • 150 mM NaCl (Sigma‐Aldrich, cat. no. S7653)
  • Varying concentrations of single tastant in deionized water
  • 1 ml Luer‐Lock syringes with 25‐G hypodermic needles
  • Additional reagents and equipment for two‐bottle preference test (see protocol 1)
PDF or HTML at Wiley Online Library



Literature Cited

  Bachmanov, A.A., Tordoff, M.G., and Beauchamp, G.K. 1996. Ethanol consumption and taste preferences in C57BL/6ByJ and 129/J mice. Alcohol. Clin. Exp. Res. 20:201‐206. doi: 10.1111/j.1530‐0277.1996.tb01630.x.
  Bachmanov, A.A., Reed, D.R., Beauchamp, G.K., and Tordoff, M.G. 2002. Food intake, water intake, and drinking spout side preference of 28 mouse strains. Behav. Genet. 32:435‐443. doi: 10.1023/A:1020884312053.
  Bernstein, I.L. and Webster, M.M. 1980. Learned taste aversions in humans. Physiol. Behav. 25:363‐366. doi: 10.1016/0031‐9384(80)90274‐7.
  Besnard, P., Passilly‐Degrace, P., and Khan, N.A. 2016. Taste of fat: A sixth taste modality? Physiol. Rev. 96:151‐176. doi: 10.1152/physrev.00002.2015.
  Boughter, J.D.Jr., St John, S.J., Noel, D.T., Ndubuizu, O., and Smith, D.V. 2002. A brief‐access test for bitter taste in mice. Chem. Senses 27:133‐142. doi: 10.1093/chemse/27.2.133.
  Boughter, J.D., Baird, J.P., Bryant, J., St. John, S.J., and Heck, D. 2007. C57BL/6J and DBA/2J mice vary in lick rate and ingestive microstructure. Genes Brain. Behav. 6:619‐627. doi: 10.1111/j.1601‐183X.2006.00293.x.
  Chale‐Rush, A., Burgess, J.R., and Mattes, R.D. 2007. Evidence for human orosensory (taste?) sensitivity to free fatty acids. Chem. Senses 32:423‐431. doi: 10.1093/chemse/bjm007.
  Davis, J.D. 1961. Electric drinkometer and recorder. J. Exp. Anal. Behav. 4:145‐147. doi: 10.1901/jeab.1961.4‐145.
  Eddy, M.C., Eschle, B.K., Barrows, J., Hallock, R.M., Finger, T.E., and Delay, E.R. 2009. Double P2X2/P2X3 purinergic receptor knockout mice do not taste NaCl or the artificial sweetener SC45647. Chem. Senses 34:789‐797. doi: 10.1093/chemse/bjp068.
  Eddy, M.C., Eschle, B.K., Peterson, D., Lauras, N., Margolskee, R.F., and Delay, E.R. 2012. A conditioned aversion study of sucrose and SC45647 taste in TRPM5 knockout mice. Chem. Senses 37:391‐401. doi: 10.1093/chemse/bjr093.
  Gaillard, D., Laugerette, F., Darcel, N., El‐Yassimi, A., Passilly‐Degrace, P., Hichami, A., Khan, N.A., Montmayeur, J.P., and Besnard, P. 2008. The gustatory pathway is involved in CD36‐mediated orosensory perception of long‐chain fatty acids in the mouse. Faseb. J. 22:1458‐1468. doi: 10.1096/fj.07‐8415com.
  Gannon, K.S., Smith, J.C., Henderson, R., and Hendrick, P. 1992. A system for studying the microstructure of ingestive behavior in mice. Physiol. Behav. 51:515‐521. doi: 10.1016/0031‐9384(92)90173‐Y.
  Garcia, J., Kimeldorf, D.J., and Koelling, R.A. 1955. Conditioned aversion to saccharin resulting from exposure to gamma radiation. Science 122:157‐158. doi: 10.1126/science.122.3160.157.
  Glendinning, J.I., Gresack, J., and Spector, A.C. 2002. A high‐throughput screening procedure for identifying mice with aberrant taste and oromotor function. Chem. Senses 27:461‐474. doi: 10.1093/chemse/27.5.461.
  Glendinning, J.I., Chyou, S., Lin, I., Onishi, M., Patel, P., and Zheng, K.H. 2005. Initial licking responses of mice to sweeteners: Effects of Tas1r3 polymorphisms. Chem. Senses 30:601‐614. doi: 10.1093/chemse/bji054.
  Grobe, C.L. and Spector, A.C. 2008. Constructing quality profiles for taste compounds in rats: A novel paradigm. Physiol. Behav. 95:413‐424. doi: 10.1016/j.physbeh.2008.07.007.
  Hallock, R.M., Tatangelo, M., Barrows, J., and Finger, T.E. 2009. Residual chemosensory capabilities in double P2X2/P2X3 purinergic receptor mull mice: Intraoral or postingestive detection? Chem. Senses 34:799‐808. doi: 10.1093/chemse/bjp069.
  Hashimoto, K. and Spector, A.C. 2014. Extensive lesions in the gustatory cortex in the rat do not disrupt the retention of a presurgically conditioned taste aversion and do not impair unconditioned concentration‐dependent licking of sucrose and quinine. Chem. Senses 39:57‐71. doi: 10.1093/chemse/bjt054.
  Hayar, A., Bryant, J.L., Boughter, J.D., and Heck, D.H. 2006. A low‐cost solution to measure mouse licking in an electrophysiological setup with a standard analog‐to‐digital converter. J. Neurosci. Methods 153:203‐207. doi: 10.1016/j.jneumeth.2005.10.023.
  Kalat, J.W. and Rozin, P. 1973. "Learned safety" as a mechanism in long‐delay taste‐aversion learning in rats. J. Comp. Physiol. Psychol. 83:198‐207. doi: 10.1037/h0034424.
  Konstantinidis, I. 2009. The taste peripheral system. B‐ENT 5 (Suppl 13):115‐121.
  Martin, C., Passilly‐Degrace, P., Gaillard, D., Merlin, J.F., Chevrot, M., and Besnard, P. 2011. The lipid‐sensor candidates CD36 and GPR120 are differentially regulated by dietary lipids in mouse taste buds: Impact on spontaneous fat preference. PLoS One 6:e24014. doi.10.1371/journal.pone.0024014.
  Poole, R.L., Aleman, T.R., Ellis, H.T., and Tordoff, M.G. 2015. Maltodextrin acceptance and preference in eight mouse strains. Chem. Senses 41:45‐52. doi: 10.1093/chemse/bjv056.
  Running, C.A., Craig, B.A., and Mattes, R.D. 2015. Oleogustus: The Unique Taste of Fat. Chem. Senses 40:507‐516. doi: 10.1093/chemse/bjv036.
  Schier, L.A., Blonde, G.D., and Spector, A.C. 2016. Bilateral lesions in a specific subregion of posterior insular cortex impair conditioned taste aversion expression in rats. J. Comp. Neurol. 524:54‐73. doi: 10.1002/cne.23822.
  Smith, J.C. 2001. The history of the “Davis Rig”. Appetite 36:93‐98. doi: 10.1006/appe.2000.0372.
  Spector, A.C., Blonde, G.D., Henderson, R.P., Treesukosol, Y., Hendrick, P., Newsome, R., Fletcher, F.H., Tang, T., and Donaldson, J.A. 2015. A new gustometer for taste testing in rodents. Chem. Senses 40:187‐196. doi: 10.1093/chemse/bju072.
  Stellar, E. and Hill, J.H. 1952. The rat's rate of drinking as a function of water deprivation. J. Comp. Physiol. Psychol. 45:96‐102. doi: 10.1037/h0062150.
  Stratford, J.M. and Contreras, R.J. 2010. Peripheral gustatory processing of free fatty acids. In Fat Detection: Taste, Texture, and Post Ingestive Effects (J.P. Montmayeur and J. Le Coutre, eds.) pp. 123‐136. CRC Press/Taylor & Francis, Boca Raton, Fla.
  Stratford, J.M., Curtis, K.S., and Contreras, R.J. 2006. Chorda tympani nerve transection alters linoleic acid taste discrimination by male and female rats. Physiol. Behav. 89:311‐319. doi: 10.1016/j.physbeh.2006.06.009.
  Takeda, M., Sawano, S., Imaizumi, M., and Fushiki, T. 2001. Preference for corn oil in olfactory‐blocked mice in the conditioned place preference test and the two‐bottle choice test. Life Sci. 69:847‐854. doi: 10.1016/S0024‐3205(01)01180‐8.
  Tomé, D., Schwarz, J., Darcel, N., and Fromentin, G. 2009. Protein, amino acids, vagus nerve signaling, and the brain. Am. J. Clin. Nutr. 90:838S‐843S. doi: 10.3945/ajcn.2009.27462W.
  Tordoff, M.G., Ellis, H.T., Aleman, T.R., Downing, A., Marambaud, P., Foskett, J.K., Dana, R.M., and McCaughey, S.A. 2014. Salty taste deficits in CALHM1 knockout mice. Chem. Senses 39:515‐528. doi: 10.1093/chemse/bju020.
  Tordoff, M.G., Aleman, T.R., Ellis, H.T., Ohmoto, M., Matsumoto, I., Shestopalov, V.I., Mitchell, C.H., Foskett, J.K., and Poole, R.L. 2015. Normal taste acceptance and preference of PANX1 knockout mice. Chem. Senses 40:453‐459. doi: 10.1093/chemse/bjv025.
  Vandenbeuch, A., Anderson, C.B., and Kinnamon, S.C. 2015. Mice lacking Pannexin 1 release ATP and respond normally to all taste qualities. Chem. Senses 40:461‐467. doi: 10.1093/chemse/bjv034.
  Yarmolinsky, D.A., Zuker, C.S., and Ryba, N.J.P. 2009. Common sense about taste: From mammals to insects. Cell 139:234‐244. doi: 10.1016/j.cell.2009.10.001.
  Zukerman, S., Ackroff, K., and Sclafani, A. 2011. Rapid post‐oral stimulation of intake and flavor conditioning by glucose and fat in the mouse. Am. J. Physiol. 301:R1635‐1647. doi: 10.1152/ajpregu.00425.2011.
Key References
  Chandrashekar, J., Hoon, M.A., Ryba, N.J., and Zuker, C.S. 2006. The receptors and cells for mammalian taste. Nature 444:288‐94.
  Together, these reviews provide a comprehensive description of the taste system, from anatomy to peripheral and central coding.
  Chaudhari, N. and Roper, S.D. 2010. The cell biology of taste. J. Cell Biol. 190:285‐296.
  This review descibes in detail how post‐oral signals regulate eating behavior.
  Liman, E.R., Zhang, Y.V., and Montell, C. 2014. Peripheral coding of taste. Neuron 81:984‐1000.
  This paper outlines common conditioned taste aversion methedology using a lickometer and was the basis of the conditioned taste aversion lickometer test described here.
  Yarmolinsky et al., 2009. See above.
  This paper provides an alternative method to measure taste thresholds using a gustometer. Although this technique is more sensitive than a conventional conditioned taste aversion paradigm, it requires highly specialized equiptment that may be unavailble for some researchers.
  Tomé et al., 2009. See above.
  Although done using rats, this paper outlines common conditioned taste aversion methodology using a modified two‐bottle preference test, and was the basis of the conditioned taste aversion two‐bottle test described here.
  Eddy et al., 2009. See above.
  Spector et al., 2015. See above.
  Stratford et al., 2006. See above.
PDF or HTML at Wiley Online Library