Exploration of Inflammatory Bowel Disease in Mice: Chemically Induced Murine Models of Inflammatory Bowel Disease (IBD)

Raffaella Maria Gadaleta1, Oihane Garcia‐Irigoyen2, Antonio Moschetta2

1 Istituto Nazionale Biostrutture e Biosistemi (INBB), Rome, 2 Interdisciplinary Department of Medicine, University of Bari, Bari
Publication Name:  Current Protocols in Mouse Biology
Unit Number:   
DOI:  10.1002/cpmo.20
Online Posting Date:  March, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Inflammatory bowel disease (IBD) is a chronic multifactorial inflammatory disorder characterized by periods of activation and remission of intestinal inflammation, with potentially severe complications, that can lead to mortality. Experimental animal models of intestinal inflammation are crucial for understanding the pathogenesis of Crohn's disease (CD) and ulcerative colitis (UC), the two major human IBD phenotypes. Animal models have been instrumental in unveiling the molecular background of IBD, and although a single model is not able to capture the complexity of this disease, each of them provided valuable insight into its different aspects. Chemically induced models of intestinal inflammation, mainly dextran sodium sulfate (DSS)‐ and 2,4,6‐trinitrobenzenesulfonic acid (TNBS)‐induced colitis, are widely used. This article describes DSS‐ and TNBS‐induced colitis models and their relevance to IBD pathophysiology and pre‐clinical therapeutic management. © 2017 by John Wiley & Sons, Inc.

Keywords: inflammatory bowel disease; sodium dextran sulfate; 2,4,6‐trinitrobenzenesulfonic acid; animal models

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Murine Model of DSS‐Induced Acute Colitis
  • Alternate Protocol 1: Murine Model of DSS‐Induced Chronic Colitis
  • Alternate Protocol 2: Azoxymethane (AOM) and DSS‐Induced Colitis‐Associated Carcinogenesis
  • Basic Protocol 2: Murine Model of TNBS‐Induced Colitis
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Murine Model of DSS‐Induced Acute Colitis

  Materials
  • 9‐ to 16‐week‐old sex‐ and age‐matched mice (strain of choice; ≥6 mice per experimental group recommended; all animals must be maintained in accordance with national or international animal care regulations)
  • Sodium dextran sulfate (DSS) solution (see recipe)
  • Inhalable anesthetic (e.g., methoxyflurane, isoflurane, halothane) or injectable anesthetic (ketamine/xylazine solution; see recipe)
  • Fluorescein isothiocyanate (FITC)‐conjugated dextran solution (see recipe)
  • Sterile isotonic saline
  • 70% ethanol
  • 10% buffered formalin
  • Paraffin (for embedding tissue)
  • Autoclaved drinking water
  • Heparin solution (anticoagulant, see recipe)
  • Mouse cages with water bottles
  • Small animal weighing scales
  • Sterile forceps and scissors
  • Oral gavage needle
  • Fluorimeter
  • 1‐, 5‐, and 10‐ml disposable syringes
Additional reagents and equipment for euthanizing mice (Donovan and Brown, )NOTE: Use of DSS of molecular weight 36,000 to 50,000 is crucial because other forms of DSS do not induce reproducible colitis or lead to high mouse mortality.

Alternate Protocol 1: Murine Model of DSS‐Induced Chronic Colitis

  Materials
  • See protocol 1.

Alternate Protocol 2: Azoxymethane (AOM) and DSS‐Induced Colitis‐Associated Carcinogenesis

  Additional Materials (also see protocol 1)
  • Azoxymethane (AOM) solution (AOM is a suspected carcinogen, handle with appropriate care; see recipe)
  • 1‐, 5‐, and 10 ml disposable syringes

Basic Protocol 2: Murine Model of TNBS‐Induced Colitis

  Materials
  • 2,4,6‐Trinitrobenzenesulfonic acid (TNBS) solution (see recipe)
  • 40% to 50% ethanol
  • 70% ethanol
  • 9‐ to 12‐week‐old sex‐ and age‐matched mice (strain of choice; ≥6 mice per experimental group recommended; all animals must be maintained in accordance with national or international animal care regulations)
  • 30% and 50% ethanol
  • Inhalable anesthetic (e.g., methoxyflurane, isoflurane, halothane) or injectable anesthetic (ketamine/xylazine solution; see recipe)
  • Fluorescein isothiocyanate (FITC)‐conjugated dextran solution (see recipe)
  • Surgical lubricant
  • Sterile isotonic saline
  • Heparin solution (see recipe)
  • Mouse cages
  • Small animal weighing scales
  • Sterile forceps and scissors
  • Oral gavage needle
  • Rectal 3.5‐French 38‐cm, polyurethane catheter (Sherwood Medical)
  • Fluorimeter
  • 1‐, 5‐, and 10‐ml disposable syringes
Additional reagents and equipment for euthanizing mice (Donovan and Brown, )
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Abraham, C. and Cho, J.H. 2009. Inflammatory bowel disease. N. Engl. J. Med. 361:2066‐2078. doi: 10.1056/NEJMra0804647.
  Adams, S. and Pacharinsak, C. 2015. Mouse anesthesia and analgesia. Curr. Protoc. Mouse Biol. 5:51‐63. doi: 10.1002/9780470942390.mo140179.
  Alex, P., Zachos, N.C., Nguyen, T., Gonzales, L., Chen, T.E., Conklin, L.S., Centola, M., and Li, X. 2009. Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS‐induced colitis. Inflamm. Bowel Dis. 15:341‐352. doi: 10.1002/ibd.20753.
  Chassaing, B., Aitken, J.D., Malleshappa, M., and Vijay‐Kumar, M. 2014. Dextran sulfate sodium (DSS)‐induced colitis in mice. Curr. Protoc. Immunol. 104:15.25.1‐15.25.14. doi: 10.1002/0471142735.im1525s104.
  Danese, S. and Fiocchi, C. 2006. Etiopathogenesis of inflammatory bowel diseases. World J. Gastroenterol. 12:4807‐4812.
  Dieleman, L.A., Palmen, M.J., Akol, H., Bloemena, E., Pena, A.S., Meuwissen, S.G., and Van Rees, E.P. 1998. Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines. Clin. Exp. Immunol. 114:385‐391. doi: 10.1046/j.1365‐2249.1998.00728.x.
  Donovan, J. and Brown, P. 2006. Euthanasia. Curr. Protoc. Immunol. 73:1.8.1‐1.8.4. doi: 10.1002/0471142735.im0108s73.
  Ekbom, A., Helmick, C., Zack, M., and Adami, H.O. 1990. Ulcerative colitis and colorectal cancer. A population‐based study. N. Engl. J. Med. 323:1228‐1233. doi: 10.1056/NEJM199011013231802.
  Elson, C.O., Beagley, K.W., Sharmanov, A.T., Fujihashi, K., Kiyono, H., Tennyson, G.S., Cong, Y., Black, C.A., Ridwan, B.W., and McGhee, J.R. 1996. Hapten‐induced model of murine inflammatory bowel disease: Mucosa immune responses and protection by tolerance. J. Immunol. 157:2174‐2185.
  Elson, C.O., Cong, Y., McCracken, V.J., Dimmitt, R.A., Lorenz, R.G., and Weaver, C.T. 2005. Experimental models of inflammatory bowel disease reveal innate, adaptive, and regulatory mechanisms of host dialogue with the microbiota. Immunol. Rev. 206:260‐276. doi: 10.1111/j.0105‐2896.2005.00291.x.
   Fischer, A.H., Jacobson, K.A., Rose, J., and Zeller, R. 2008. Hematoxylin and eosin staining of tissue and cell sections. Cold Spring Harb. Protoc. 2008:pdb.prot4986. doi: 10.1101/pdb.prot4986.
  Gadaleta, R.M., van Erpecum, K.J., Oldenburg, B., Willemsen, E.C., Renooij, W., Murzilli, S., Klomp, L.W., Siersema, P.D., Schipper, M.E., Danese, S., Penna, G., Laverny, G., Adorini, L., Moschetta, A., and van Mil, S.W. 2011. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut 60:463‐472. doi: 10.1136/gut.2010.212159.
  Grimm, M.C. 2009. New and emerging therapies for inflammatory bowel diseases. J. Gastroenterol. Hepatol. 24 (Suppl 3):S69‐S74. doi: 10.1111/j.1440‐1746.2009.06074.x.
  Hans, W., Scholmerich, J., Gross, V., and Falk, W. 2000. The role of the resident intestinal flora in acute and chronic dextran sulfate sodium‐induced colitis in mice. Eur. J. Gastroenterol. Hepatol. 12:267‐273. doi: 10.1097/00042737‐200012030‐00002.
  Hollander, D. 1993. Permeability in Crohn's disease: Altered barrier functions in healthy relatives? Gastroenterology 104:1848‐1851. doi: 10.1016/0016‐5085(93)90668‐3.
  Hooper, L.V., Bry, L., Falk, P.G., and Gordon, J.I. 1998. Host‐microbial symbiosis in the mammalian intestine: Exploring an internal ecosystem. Bioessays 20:336‐343. doi: 10.1002/(SICI)1521‐1878(199804)20:4%3c336::AID‐BIES10%3e3.0.CO;2‐3.
  Kim, J.J., Shajib, M.S., Manocha, M.M., and Khan, W.I. 2012. Investigating intestinal inflammation in DSS‐induced model of IBD. J. Vis. Exp. 60:e3678. doi: 10.3791/3678.
  Kitajima, S., Takuma, S., and Morimoto, M. 2000. Histological analysis of murine colitis induced by dextran sulfate sodium of different molecular weights. Exp. Anim. 49:9‐15. doi: 10.1538/expanim.49.9.
  Ley, R.E., Hamady, M., Lozupone, C., Turnbaugh, P.J., Ramey, R.R., Bircher, J.S., Schlegel, M.L., Tucker, T.A., Schrenzel, M.D., Knight, R., and Gordon, J.I. 2008. Evolution of mammals and their gut microbes. Science 320:1647‐1651. doi: 10.1126/science.1155725.
  Mahler, M., Bristol, I.J., Leiter, E.H., Workman, A.E., Birkenmeier, E.H., Elson, C.O., and Sundberg, J.P. 1998. Differential susceptibility of inbred mouse strains to dextran sulfate sodium‐induced colitis. Am. J. Physiol. 274:G544‐551.
  McGovern, D.P., Taylor, K.D., Landers, C., Derkowski, C., Dutridge, D., Dubinsky, M., Ippoliti, A., Vasiliauskas, E., Mei, L., Mengesha, E., King, L., Pressman, S., Targan, S.R., and Rotter, J.I. 2009. MAGI2 genetic variation and inflammatory bowel disease. Inflamm. Bowel Dis. 15:75‐83. doi: 10.1002/ibd.20611.
  Melgar, S., Karlsson, L., Rehnstrom, E., Karlsson, A., Utkovic, H., Jansson, L., and Michaelsson, E. 2008. Validation of murine dextran sulfate sodium‐induced colitis using four therapeutic agents for human inflammatory bowel disease. Int. Immunopharmacol. 8:836‐844. doi: 10.1016/j.intimp.2008.01.036.
  Morris, G.P., Beck, P.L., Herridge, M.S., Depew, W.T., Szewczuk, M.R., and Wallace, J.L. 1989. Hapten‐induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology 96:795‐803. doi: 10.1016/S0016‐5085(89)80079‐4.
  Muise, A.M., Walters, T., Wine, E., Griffiths, A.M., Turner, D., Duerr, R.H., Regueiro, M.D., Ngan, B.Y., Xu, W., Sherman, P.M., Silverberg, M.S., and Rotin, D. 2007. Protein‐tyrosine phosphatase sigma is associated with ulcerative colitis. Curr. Biol. 17:1212‐1218. doi: 10.1016/j.cub.2007.06.013.
  Neufert, C., Becker, C., and Neurath, M.F. 2007. An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation‐driven tumor progression. Nat. Protoc. 2:1998‐2004. doi: 10.1038/nprot.2007.279.
  Neurath, M.F., Fuss, I., Kelsall, B.L., Stuber, E., and Strober, W. 1995. Antibodies to interleukin 12 abrogate established experimental colitis in mice. J. Exp. Med. 182:1281‐1290. doi: 10.1084/jem.182.5.1281.
  Okayasu, I., Hatakeyama, S., Yamada, M., Ohkusa, T., Inagaki, Y., and Nakaya, R. 1990. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 98:694‐702. doi: 10.1016/0016‐5085(90)90290‐H.
  Peeters, M., Geypens, B., Claus, D., Nevens, H., Ghoos, Y., Verbeke, G., Baert, F., Vermeire, S., Vlietinck, R., and Rutgeerts, P. 1997. Clustering of increased small intestinal permeability in families with Crohn's disease. Gastroenterology 113:802‐807. doi: 10.1016/S0016‐5085(97)70174‐4.
  Pfeiffer, C.J. and Qiu, B.S. 1995. Effects of chronic nitric oxide synthase inhibition on TNB‐induced colitis in rats. J. Pharm. Pharmacol. 47:827‐832. doi: 10.1111/j.2042‐7158.1995.tb05749.x.
  Rath, H.C., Schultz, M., Freitag, R., Dieleman, L.A., Li, F., Linde, H.J., Scholmerich, J., and Sartor, R.B. 2001. Different subsets of enteric bacteria induce and perpetuate experimental colitis in rats and mice. Infect. Immun. 69:2277‐2285. doi: 10.1128/IAI.69.4.2277‐2285.2001.
  Reilly, R.W. and Kirsner, J.B. 1965. Runt intestinal disease. Lab. Invest. 14:102‐107.
  Round, J.L. and Mazmanian, S.K. 2009. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9:313‐323. doi: 10.1038/nri2515.
  Sartor, R.B. 2006. Mechanisms of disease: Pathogenesis of Crohn's disease and ulcerative colitis. Nat. Clin. Pract. Gastroenterol. Hepatol. 3:390‐407. doi: 10.1038/ncpgasthep0528.
  Seril, D.N., Liao, J., Yang, G.Y., and Yang, C.S. 2003. Oxidative stress and ulcerative colitis‐associated carcinogenesis: Studies in humans and animal models. Carcinogenesis 24:353‐362. doi: 10.1093/carcin/24.3.353.
  Sommers, S.C. and Korelitz, B.I. 1975. Mucosal‐cell counts in ulcerative and granulomatous colitis. Am. J. Clin. Pathol. 63:359‐365. doi: 10.1093/ajcp/63.3.359.
  Tanaka, T., Kohno, H., Murakami, M., Shimada, R., and Kagami, S. 2000. Colitis‐related rat colon carcinogenesis induced by 1‐hydroxy‐anthraquinone and methylazoxymethanol acetate (Review). Oncol. Rep. 7:501‐508. doi:10.3892/or.7.3.501.
  Tanaka, T., Kohno, H., Suzuki, R., Yamada, Y., Sugie, S., and Mori, H. 2003. A novel inflammation‐related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate. Cancer Sci. 94:965‐973. doi: 10.1111/j.1349‐7006.2003.tb01386.x.
  Terzic, J., Grivennikov, S., Karin, E., and Karin, M. 2010. Inflammation and colon cancer. Gastroenterology 138:2101‐2114.e5. doi: 10.1053/j.gastro.2010.01.058.
  Wehkamp, J., Schmid, M., and Stange, E.F. 2007. Defensins and other antimicrobial peptides in inflammatory bowel disease. Curr. Opin. Gastroenterol. 23:370‐378. doi: 10.1097/MOG.0b013e328136c580.
  Wirtz, S. and Neurath, M.F. 2000. Animal models of intestinal inflammation: New insights into the molecular pathogenesis and immunotherapy of inflammatory bowel disease. Int. J. Colorectal Dis. 15:144‐160. doi: 10.1007/s003840000227.
  Wirtz, S., Neufert, C., Weigmann, B., and Neurath, M.F. 2007. Chemically induced mouse models of intestinal inflammation. Nat. Protocol. 2:541‐546. doi: 10.1038/nprot.2007.41.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library