Mouse Model of Burn Wound and Infection: Thermal (Hot Air) Lesion‐Induced Immunosuppression

Henrik Calum1, Niels Høiby2, Claus Moser2

1 Department of Clinical Microbiology, Hvidovre Hospital, Copenhagen, 2 Department of Clinical Microbiology, Rigshospitalet, Copenhagen
Publication Name:  Current Protocols in Mouse Biology
Unit Number:   
DOI:  10.1002/cpmo.25
Online Posting Date:  June, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


The immunosuppression induced by thermal injury renders the burned victim susceptible to infection. A mouse model was developed to examine the immunosuppression, which was possible to induce even at a minor thermal insult of 6% total body surface area. After induction of the burn (48 hr) a depression of leukocytes in the peripheral blood was found of the burned mice. This depression was due to a reduction in the polymorphonuclear cells. The burned mice were not able to clear a Pseudomonas aeruginosa wound infection, since the infection spread to the blood as compared to mice only infected with P. aeruginosa subcutaneously. The burn model offers an opportunity to study infections under these conditions. The present model can also be used to examine new antibiotics and immune therapy. Our animal model resembling the clinical situation is useful in developing new treatments of burn wound victims. © 2017 by John Wiley & Sons, Inc.

Keywords: immunosuppression; leucocytes; mouse model; pseudomonas aeruginosa

PDF or HTML at Wiley Online Library

Table of Contents

  • Commentary
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


Basic Protocol 1:

  • 12‐week‐old specific pathogen‐free female C3H/HeN or BALB/c mice
  • Wild‐type P. aeruginosa PAO1 strain
  • Filtered ox broth (e.g., Statens Serum Institut)
  • 0.9% saline
  • Blue plates (a modified Conradi‐Drigalski agar; e.g., Statens Serum Institut; see Calum et al., , )
  • Etomidate
  • Midazolam
  • 55 mg/ml glucose
  • 0.3 mg/ml buprenorphine
  • 20% (w/v) pentobarbital
  • Barrier housing facility
  • 37°C incubator with variable shaking
  • Spectrophotometer
  • Forceps
  • Electric hair clipper
  • Metal sledge (constructed in‐house; see Fig.  C)
  • Fire blanket (10 cm × 10 cm)
  • Hot air blower (e.g., Bosch 500‐2; see Fig.  A)
  • Metal plate (steel) with a 1.7 × 2.6 × 0.5 cm window (constructed in‐house; see Fig.  B)
  • Electrical heating pad
  • Syringe with 27‐G needle
NOTE: All protocols using live animals must first be reviewed and approved by an Institutional Animal Care and Use Committee (IACUC) or must conform to governmental regulations regarding the care and use of laboratory animals.
PDF or HTML at Wiley Online Library



Literature Cited

  Altoparlak, U., Erol, S., Akcay, M. N., Celebi, F., & Kadanali, A. (2004). The time‐related changes of antimicrobial resistance patterns and predominant bacterial profiles of burn wounds and body flora of burned patients. Burns, 30, 660–664. doi: 10.1016/j.burns.2004.03.005.
  American Burn Association. (2016). Burn incidence fact sheet: Burn Incidence and Treatment in the United States – 2016 [online resource]. Retrieved from
  Arturson, G. (1985). Neutrophil granulocyte functions in severely burned patients. Burns, 11, 309–319.
  Asko‐Seljavaara, S. (1987). Granulocyte kinetics in burns. The Journal of Burn Care and Rehabilitation, 8, 492–495.
  Babcock, G. F. (2003). Predictive medicine: Severe trauma and burns. Clinica Cytometry, 53B, 48–53. doi: 10.1002/cyto.b.10038.
  Barnea, Y., Carmeli, Y., Kuzmenko, B., Eyal, G., Hammer‐Munz, O., & Navon‐Venezia, S. (2006). The establishment of a Pseudomonas aeruginosa‐infected burn‐wound sepsis model and the effect of imipenem treatment. Annals of Plastic Surgery, 56, 674–679. doi: 10.1097/
  Benson, A. (2006). ABC of wound healing: Burns. The British Medical Journal, 332, 649–652. doi: 10.1136/bmj.332.7542.649.
  Branski, L. K., Al‐Mousawi, A., Rivero, H., Jeschke, M. G., Sanford, A. P., & Herndom, D. N. (2009). Emerging infections in burns. Surgical Infections, 5, 389–397. doi: 10.1089/sur.2009.024.
  Butler, K. L., Ambravaneswaran, V., Agrawal, N., Bilodeau, M., Toner, M., Tompkins, R. G., … Irimia, D. (2010). Burn injury reduces neutrophil directional migration speed in microfluidic devices. PLoS One, 5, e11921. doi: 10.1371/journal.pone.0011921.
  Calum, H., Høiby, N., & Moser, C. (2014). Burn mouse models. Methods in Molecular Biology, 114, 793–802. doi: 10.1007/978‐1‐4939‐0473‐0_60.
  Calum, H., Moser, C., Jensen, P. Ø., Christophersen, L., Maling, D. S., Van Gennip, M., … Høiby, N. (2009). Thermal injury induces impaired function in polymorphonuclear neutrophil granulocytes and reduced control of burn wound infection. Clinical & Experimental Immunology, 156, 102–110. doi: 10.1111/j.1365‐2249.2008.03861.x.
  Ceniceros, A., Pertega, S., Galeiras, R., Mourelo, M., Lopez, E., Broullon, J., … Freire, D. (2015). Predicting mortality in burn patients with bacteraemia. Infection, 44, 215–222. doi: 10.1007/s15010‐015‐0847‐x.
  Chang, K. C., Ma, H., Liao, W. C., Lee, C. K., Lin, C. Y., & Chen, C. C. (2010). The optimal time for early burn wound excision to reduce pro‐inflammatory cytokine production in a murine burn injury model. Burns, 36, 1059–1066. doi: 10.1016/j.burns.2010.02.004.
  Clancy, K. D., Lorenz, K., Dries, D., Gamelli, R. L., & Hahn, E. L. (2000). Chlorpromazine modulates cytokine expression in the liver and lung after burn injury and endotoxemia. The Journal of Trauma, 48, 215–223.
  D'avignon, L. C., Hogan, B. K., Murray, C. K., Loo, F. L., Hospenthal, D. R., Cancio, L. C., … Wolf, S. E. (2010). Contribution of bacterial and viral infections to attributable mortality in patients with severe burns: An autopsy series. Burns, 36, 773–779. doi: 10.1016/j.burns.2009.11.007.
  Dai, T., Kharkwal, G. B., Masamitsu, T., Huang, Y. Y., Bil de Arce, V. J., & Hamblin, M. R. (2011). Animal models of external traumatic wound infections. Virulence, 2, 296–315. doi: 10.4161/viru.2.4.16840.
  Fagan, S. P., Bilodeau, M. L., & Goverman, J. (2014). Burn intensive care. The Surgical Clinics of North America, 94, 765–796. doi: 10.1016/j.suc.2014.05.004.
  Gilpin, D. A. (1996). Calculation of a new Meeh constant and experimental determination of burn size. Burns, 22, 607–611. doi: 10.1016/S0305‐4179(96)00064‐2.
  Graddock, C. G. (1972). Production, distribution, and fate of granulocytes. In W. J. Williams, E. Beutler, A. J. Erslev, et al. (Eds.), Hematology (pp 607–618). New York: McGraw‐Hill.
  Hart, D. W., Wolf, S. E., Chinkes, D. L., Beaufortd, R. B., Mlcak, R. P., Heggers, J. P., … Herndon, D. N. (2003). Effects of early excision and aggressive enteral feeding on hypermetablism, catablism, and sepsis after severe burn. The Journal of Trauma, 54, 755–764. doi: 10.1097/01.TA.0000060260.61478.A7.
  Janzekovic, Z. (1970). A new concept in the early excision and immediate grafting of burns. The Journal of Trauma, 10, 1103–1108. doi: 10.1097/00005373‐197012000‐00001.
  Kolmos, H. J., Thuesen, B., Nielsen, S. V., Lohmann, M., Kristoffersen, K., & Rosdahl, V. T. (1993). Outbreak of infection in a burns unit due to Pseudomoas aeruginosa originating from contaminated tubing used for irrigation of patients. The Journal of Hospital Infection, 24, 11–21. doi: 10.1016/0195‐6701(93)90085‐E.
  Macedo, J. L. S., & Santos, J. B. (2006). Nosocomial infections in a Brazilian Burn unit. Burns, 32, 477–481. doi: 10.1016/j.burns.2005.11.012.
  Mayhall, C. G. (2003). The epidemiology of burn wound infections: Then and now. Clinical Infectious Diseases, 37, 543–550. doi: 10.1086/376993.
  Nusbaum, A. G., Gil, J., Rippy, M. K., Warne, B., Valdes, J., Claro, A., & Davis, S. C. (2012). Effective method to remove wound bacteria: Comparison of various debridement modalities in an in vivo porcine model. The Journal of Surgical Research, 176, 701–707. doi: 10.1016/j.jss.2011.11.1040.
  O'Sullivan, S. T., & O'Connor, T. P. (1997). Immunosuppression following thermal injury: The pathogenesis of immunodysfunction. British Journal of Plastic Surgery, 50, 615–623. doi: 10.1016/S0007‐1226(97)90507‐5.
  Ong, Y. S., Samuel, M., & Song, S. C. (2006). Meta‐analysis of early excision of burns. Burns, 32, 145–150. doi: 10.1016/j.burns.2005.09.005.
  Orenstein, A., Klein, D., Kopolovic, J., Winkler, E., Malik, Z., Keller, N., & Nitzan, Y. (1997). The use of porphyrins for eradication of Staphylococcus aureus in burn wound infections. FEMS immunology and Medical Microbiology, 19, 307–314. doi: 10.1111/j.1574‐695X.1997.tb01101.x.
  Ozkan, A. X., Ninnemann, J. L., & Sullivan, J. (1986). Progress in the characterization of immunosuppressive glycopeptide 8SAP) from patients with major thermal injuries. Journal of Burn Care, 7, 388–397. doi: 10.1097/00004630‐198609000‐00003.
  Pallua, N., & Heimburg, D. V. (2003). Pathogenic role of interleukin‐6 in the development of sepsis. Part 1: Study in a standardized contact burn murine model. Critical Care Medicine, 31, 1490–1494. doi: 10.1097/01.CCM.0000065724.51708.F5.
  Peng, D., Huang, W., Ai, S., & Wang, S. (2006). Clinical significance of leukocyte infiltrative response in deep wound of patients with major burns. Burns, 3, 946–950. doi: 10.1016/j.burns.2006.03.003.
  Rastegar, A. L., Honar, H. B., & Alaghehbandan, R. (1998). Pseudomonas infections in Tohid Burn Center, Iran. Burns, 24, 637–641. doi: 10.1016/S0305‐4179(98)00090‐4.
  Schroeder, T. V., Schulze, S., Hilsted, J., & Gøtzsche, L. (Eds.) (2001). Basisbog i medicin og kirurgi. Copenhagen, Denmark: Munksgaard.
  Shoup, M., Weisenberger, J. M., Wang, J. L., Pyle, J. M., Gamelli, R. L., & Shankar, R. (1998). Mechanism of neutropenia involving myeloid maturation arrest in burn sepsis. Annals of Surgery, 228, 112–122. doi: 10.1097/00000658‐199807000‐00017.
  Stieritz, D. D., & Holder, L. A. (1975). Experimental studies of the pathogenesis of infections due to Pseudomonas aeruginosa: Description of a burned mouse model. The Journal of Infectious Diseases, 131, 688–691. doi: 10.1093/infdis/131.6.688.
  Tredget, E. E., Shankowsky, H. A., Rennie, R., Burrel, R. E., & Logsetty, S. (2004). Pseudomonas aeruginosa in the thermally injured patient. Burns, 30, 3–26. doi: 10.1016/j.burns.2003.08.007.
  Walker, H. L., & Mason, A. D. (1968). A standard animal burn. The Journal of Trauma, 8, 1049–1051. doi: 10.1097/00005373‐196811000‐00006.
  World Health Organization. (2017). Violence and injury prevention: Burns [online resource]. Retrieved from
Internet Resources
  Provides information and facts about burns.
  Provides information about burns and treatment.‐og‐foerstehjaelp/tilstande‐og‐sygdomme/brandskader/brandskade.
  Danish site that provides information and facts about burns in Denmark.
  WHO site that provides information from a global perspective on burns.
PDF or HTML at Wiley Online Library