A Mouse Model for Ocular Surface Staphylococcus aureus Infection

Zhiyong Zhang1, Osama Abdel‐Razek2, Guirong Wang2

1 Department of Ophthalmology, Zhejiang Medical College Affiliated Zhejiang Hospital, Hangzhou, Zhejiang, 2 Department of Surgery, The State University of New York Upstate Medical University, Syracuse
Publication Name:  Current Protocols in Mouse Biology
Unit Number:   
DOI:  10.1002/cpmo.23
Online Posting Date:  March, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Creation of an appropriate animal model that accurately reflects the disease and host immune response to bacterial infection in humans is a major challenge in ocular‐surface infection research. For decades, mice have been the ideal small animal model for ocular‐surface infection research because of the availability and relatively low cost of various genetic backgrounds, targeted defects, and immunologic reagents. By employing different combinations of mouse and bacterial strains, murine infection models can be used to explore a complete picture of bacterial infection and innate immunity of the ocular surface. A murine model of Staphylococcus aureus infection under normal ocular circumstances is presented here as a convenient and tractable model system in which to study mammalian host responses to pathogens. © 2017 by John Wiley & Sons, Inc.

Keywords: infection; cornea; Staphylococcus aureus, host defense; eye

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Mouse Model of Ocular Surface Infection with S. aureus
  • Support Protocol 1: Preparation of Bacteria Working Stocks
  • Support Protocol 2: Bacterial Clearance from the Ocular Surface of Mice
  • Support Protocol 3: Bacterial Invasion Index of Epithelial Cells
  • Support Protocol 4: Phagocytic Index of Neutrophils
  • Support Protocol 5: Corneal Fluorescein Staining
  • Commentary
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


Basic Protocol 1: Mouse Model of Ocular Surface Infection with S. aureus

  • C57BL/6 mice, or other suitable strains of laboratory mice, 8 to 12 week of age
  • Animal scale
  • Heated pads for surgical bed and recovery
  • Non‐fenestrated, sterile field drape
  • Sterile 1‐ml plastic syringes
  • 25‐gauge needles
  • Pipet with sterile tip (appropriate for 5 µl volume)
  • Additional reagents and equipment for mouse anesthesia (Adams & Pacharinsak, )

Support Protocol 1: Preparation of Bacteria Working Stocks

  • S. aureus (ATCC 25923)
  • Tryptic soy agar plates
  • Tryptic soy broth
  • Phosphate‐buffered saline (PBS), sterile

Support Protocol 2: Bacterial Clearance from the Ocular Surface of Mice

  Additional Materials (also see protocol 1Basic Protocol)
  • Mice inoculated with S. aureus (from Basic Protocol 1)
  • Tryptic soy agar plates

Support Protocol 3: Bacterial Invasion Index of Epithelial Cells

  Materials (also see protocol 1Basic Protocol)
  • Mice inoculated with S. aureus (from protocol 1Basic Protocol)
  • Cytospin centrifuge
  • Hema‐3 Stain Kit
  • Light microscope

Support Protocol 4: Phagocytic Index of Neutrophils

  Additional Materials (also see protocol 1Basic Protocol)
  • 1% (w/v) sodium fluorescein
  • Slit‐lamp biomicroscope equipped with camera
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
  Adams, S. & Pacharinsak, C. (2015). Mouse anesthesia and analgesia. Current Protocols in Mouse Biology, 5, 51–63. doi: 10.1002/9780470942390.mo140179.
  Aristimuno, B., Nirankari, V. S., Hemady, R. K., & Rodrigues, M. M. (1993). Spontaneous ulcerative keratitis in immunocompromised patients. American Journal of Ophthalmology, 115, 202–208. doi: 10.1016/S0002‐9394(14)73924‐8.
  Callegan, M. C., Hobden, J. A., Hill, J. M., Insler, M. S., & O'Callaghan, R. J. (1992). Topical antibiotic therapy for the treatment of experimental Staphylococcus aureus keratitis. Investigative Ophthalmology & Visual Science, 33, 3017–3023.
  Chou, T. Y. & Prabhu, S. P. (2011). Clinical course and management of postoperative methicillin‐resistant Staphylococcus aureus keratitis in immunocompromised patients: Two case reports. Clinical Ophthalmology, 5, 1789–1793. doi: 10.2147/OPTH.S23201.
  Cruz, O. A., Sabir, S. M., Capo, H., & Alfonso, E. C. (1993). Microbial keratitis in childhood. Ophthalmology, 100, 192–196. doi: 10.1016/S0161‐6420(93)31671‐4.
  Gadjeva, M., Nagashima, J., Zaidi, T., Mitchell, R. A., & Pier, G. B. (2010). Inhibition of macrophage migration inhibitory factor ameliorates ocular Pseudomonas aeruginosa‐induced keratitis. PLoS Pathogens, 6, e1000826. doi: 10.1371/journal.ppat.1000826.
  Hume, E. B., Moreau, J. M., Conerly, L. L., Cannon, B. M., Dajcs, J. J., Hill, J. M., … O'Callaghan, R. J. (1999). Clarithromycin for experimental Staphylococcus aureus keratitis. Current Eye Research, 18, 358–362. doi: 10.1076/ceyr.18.5.358.5350.
  Ji, Y. W., Cho, Y. J., Lee, C. H., Hong, S. H., Chung, D. Y., Kim, E. K., … Lee, H. K. (2015). Comparison of surface roughness and bacterial adhesion between cosmetic contact lenses and conventional contact lenses. Eye & Contact Lens, 41, 25–33. doi: 10.1097/ICL.0000000000000054.
  Kreger, A. S. (1983). Pathogenesis of Pseudomonas aeruginosa ocular diseases. Reviews of Infectious Diseases, 5, S931–935. doi: 10.1093/clinids/5.Supplement_5.S931.
  Lichtinger, A., Yeung, S. N., Kim, P., Amiran, M. D., Iovieno, A., Elbaz, U., … Slomovic, A. R. (2012). Shifting trends in bacterial keratitis in Toronto: An 11‐year review. Ophthalmology, 119, 1785–1790. doi: 10.1016/j.ophtha.2012.03.031.
  Limberg, M. B. (1991). A review of bacterial keratitis and bacterial conjunctivitis. American Journal of Ophthalmology, 112, 2S‐9S.
  Miyazaki, D., Tominaga, T., Kakimaru‐Hasegawa, A., Nagata, Y., Hasegawa, J., & Inoue, Y. (2008). Therapeutic effects of tacrolimus ointment for refractory ocular surface inflammatory diseases. Ophthalmology, 115, 988–992.e5. doi: 10.1016/j.ophtha.2007.07.025.
  Mun, J. J., Tam, C., Kowbel, D., Hawgood, S., Barnett, M. J., Evans, D. J., … Fleiszig, S. M. (2009). Clearance of Pseudomonas aeruginosa from a healthy ocular surface involves surfactant protein D and is compromised by bacterial elastase in a murine null‐infection model. Infection and Immunity, 77, 2392–2398. doi: 10.1128/IAI.00173‐09.
  Ni, N., Nam, E. M., Hammersmith, K. M., Nagra, P. K., Azari, A. A., Leiby, B. E., Dai, Y., … Rapuano, C. J. (2015). Seasonal, geographic, and antimicrobial resistance patterns in microbial keratitis: 4‐year experience in eastern Pennsylvania. Cornea, 34, 296–302. doi: 10.1097/ICO.0000000000000352.
  Oguz, H., Ozbilge, H., Oguz, E., & Gurkan, T. (2005). Effectiveness of topical taurolidine versus ciprofloxacin, ofloxacin, and fortified cefazolin in a rabbit Staphylococcus aureus keratitis model. Current Eye Research, 30, 155–161. doi: 10.1080/02713680490908733.
  Pachigolla, G., Blomquist, P., & Cavanagh, H. D. (2007). Microbial keratitis pathogens and antibiotic susceptibilities: A 5‐year review of cases at an urban county hospital in north Texas. Eye & Contact Lens, 33, 45–49. doi: 10.1097/01.icl.0000234002.88643.d0.
  Tam, C., Lewis, S. E., Li, W. Y., Lee, E., Evans, D. J., & Fleiszig, S. M. (2007). Mutation of the phospholipase catalytic domain of the Pseudomonas aeruginosa cytotoxin ExoU abolishes colonization promoting activity and reduces corneal disease severity. Experimental Eye Research, 85, 799–805. doi: 10.1016/j.exer.2007.08.015.
  Tang, A., Caballero, A. R., Marquart, M. E., & O'Callaghan, R. J. (2013). Pseudomonas aeruginosa small protease (PASP), a keratitis virulence factor. Investigative Ophthalmology & Visual Science, 54, 2821–2828. doi: 10.1167/iovs.13‐11788.
  Vallas, V., Stapleton, F., & Willcox, M. D. (1999). Bacterial invasion of corneal epithelial cells. Australian and New Zealand Journal of Ophthalmology, 27, 228–230. doi: 10.1046/j.1440‐1606.1999.00203.x.
  Wei, Y., Epstein, S. P., Fukuoka, S., Birmingham, N. P., Li, X. M., & Asbell, P. A. (2011). sPLA2‐IIa amplifies ocular surface inflammation in the experimental dry eye (DE) BALB/c mouse model. Investigative Ophthalmology & Visual Science, 52, 4780–4788. doi: 10.1167/iovs.10‐6350.
  Wilhelmus, K. R. (1988). The red eye. Infectious conjunctivitis, keratitis, endophthalmitis, and periocular cellulitis. Infectious Disease Clinics of North America, 2, 99–116.
  Xiao, B., Wang, Y., Reinach, P. S., Ren, Y., Li, J., Hua, S., … Chen, W. (2015). Dynamic ocular surface and lacrimal gland changes induced in experimental murine dry eye. PLoS One, 10, e0115333. doi: 10.1371/journal.pone.0115333.
  Zaidi, T., Zaidi, T., Yoong, P., & Pier, G. B. (2013). Staphylococcus aureus corneal infections: Effect of the Panton‐Valentine leukocidin (PVL) and antibody to PVL on virulence and pathology. Investigative Ophthalmology & Visual Science, 54, 4430–4438. doi: 10.1167/iovs.13‐11701.
  Zhang, Z., Abdel‐Razek, O., Hawgood, S., & Wang, G. (2015). Protective role of surfactant protein D in ocular Staphylococcus aureus infection. PLoS One, 10, e0138597. doi: 10.1371/journal.pone.0138597.
PDF or HTML at Wiley Online Library