Cre‐loxP‐Mediated Recombination: General Principles and Experimental Considerations

Micheal A. McLellan1, Nadia A. Rosenthal2, Alexander R. Pinto3

1 Graduate Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, 2 National Heart and Lung Institute, Imperial College London, London, 3 Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria
Publication Name:  Current Protocols in Mouse Biology
Unit Number:   
DOI:  10.1002/cpmo.22
Online Posting Date:  March, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


The cre‐loxP–mediated recombination system (the “cre‐loxP system”) is an integral experimental tool for mammalian genetics and cell biology. Use of the system has greatly expanded our ability to precisely interrogate gene function in the mouse, providing both spatial and temporal control of gene expression. This has been largely due to the simplicity of its use and its adaptability to address diverse biological questions. While the use of the cre‐loxP system is becoming increasingly widespread, in particular because of growing availability of conditional mouse mutants, many considerations need to be taken into account when utilizing the cre‐loxP system. This review provides an overview of the cre‐loxP system and its various permutations. It addresses the limitations of cre‐loxP technology and related considerations for experimental design, and it discusses alternative strategies for site‐specific genetic recombination and integration. © 2017 by John Wiley & Sons, Inc.

Keywords: cre; loxP; cre‐loxP; gene editing; recombination; site directed mutagenesis; conditional genetics

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Operation of the cre‐loxP System
  • Inducible cre Models
  • Limitations of the cre‐loxP System
  • Site‐Specific Recombinase and Integrase Alternatives to cre‐loxP Systems
  • Concluding Remarks
  • Acknowledgments
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

  Abram, C.L., Roberge, G.L., Hu, Y., and Lowell, C.A. 2014. Comparative analysis of the efficiency and specificity of myeloid‐Cre deleting strains using ROSA‐EYFP reporter mice. J. Immunol. Methods 408:89‐100. doi: 10.1016/j.jim.2014.05.009.
  Agah, R., Frenkel, P.A., French, B.A., Michael, L.H., Overbeek, P.A., and Schneider, M.D. 1997. Gene recombination in postmitotic cells targeted expression of Cre recombinase provokes cardiac‐restricted, site‐specific rearrangement in adult ventricular muscle in vivo. J. Clin. Invest. 100:169‐179. doi: 10.1172/JCI119509.
  Anastassiadis, K., Fu, J., Patsch, C., Hu, S., Weidlich, S., Duerschke, K., Buchholz, F., Edenhofer, F., and Stewart, A.F. 2009. Dre recombinase, like Cre, is a highly efficient site‐specific recombinase in E. coli, mammalian cells and mice. Dis. Model. Mech. 2:508‐515. doi: 10.1242/dmm.003087.
  Andreas, S., Schwenk, F., Küter‐Luks, B., Faust, N., and Kühn, R. 2002. Enhanced efficiency through nuclear localization signal fusion on phage PhiC31‐integrase: Activity comparison with Cre and FLPe recombinase in mammalian cells. Nucleic Acids Res. 30:2299‐2306. doi: 10.1093/nar/30.11.2299.
  Bersell, K., Choudhury, S., Mollova, M., Polizzotti, B.D., Ganapathy, B., Walsh, S., Wadugu, B., Arab, S., and Kühn, B. 2013. Moderate and high amounts of tamoxifen in αMHC‐MerCreMer mice induce a DNA damage response, leading to heart failure and death. Dis. Model. Mech. 6:1459‐1469. doi: 10.1242/dmm.010447.
  Buchholz, F., Ringrose, L., Angrand, P.‐O., Rossi, F., and Stewart, A.F. 1996. Different thermostabilities of FLP and Cre recombinases: Implications for applied site‐specific recombination. Nucleic Acids Res. 24:4256‐4262. doi: 10.1093/nar/24.21.4256.
  Buerger, A., Rozhitskaya, O., Sherwood, M.C., Dorfman, A.L., Bisping, E., Abel, E.D., Pu, W.T., Izumo, S., and Jay, P.Y. 2006. Dilated cardiomyopathy resulting from high‐level myocardial expression of cre‐recombinase. J. Card. Fail. 12:392‐398. doi: 10.1016/j.cardfail.2006.03.002.
  Caton, M.L., Smith‐Raska, M.R., and Reizis, B. 2007. Notch‐RBP‐J signaling controls the homeostasis of CD8‐ dendritic cells in the spleen. J. Exp. Med. 204:1653‐1664. doi: 10.1084/jem.20062648.
  Chow, A., Lucas, D., Hidalgo, A., Méndez‐Ferrer, S., Hashimoto, D., Scheiermann, C., Battista, M., Leboeuf, M., Prophete, C., van Rooijen, N., Tanaka, M., Merad, M., and Frenette, P.S. 2011. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J. Exp. Med. 208:261‐271. doi: 10.1084/jem.20101688.
  Clausen, B.E., Burkhardt, C., Reith, W., Renkawitz, R., and Förster, I. 1999. Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res. 8:265‐277. doi: 10.1023/A:1008942828960.
  Danielian, P.S., White, R., Hoare, S.A., Fawell, S.E., and Parker, M.G. 1993. Identification of residues in the estrogen receptor that confer differential sensitivity to estrogen and hydroxytamoxifen. Mol. Endocrinol. 7:232‐240. doi: 10.1210/mend.7.2.8469236.
  Dewachter, I., Reversé, D., Caluwaerts, N., Ris, L., Kuipéri, C., Van den Haute, C., Spittaels, K., Umans, L., Serneels, L., Thiry, E., Moechars, D., Mercken, M., Godaux, E., and Van Leuven, F. 2002. Neuronal deficiency of presenilin 1 inhibits amyloid plaque formation and corrects hippocampal long‐term potentiation but not a cognitive defect of amyloid precursor protein [V717I] transgenic mice. J. Neurosci. 22:3445‐3453. doi: 20026290.
  Dutta, P., Hoyer, F.F., Grigoryeva, L.S., Sager, H.B., Leuschner, F., Courties, G., Borodovsky, A., Novobrantseva, T., Ruda, V.M., Fitzgerald, K., Iwamoto, Y., Wojtkiewicz, G., Sun, Y., Da Silva, N., Libby, P., Anderson, D.G., Swirski, F.K., Weissleder, R., and Nahrendorf, M. 2015. Macrophages retain hematopoietic stem cells in the spleen via VCAM‐1. J. Exp. Med. 212:497‐512. doi: 10.1084/jem.20141642.
  Dutta, P., Courties, G., Wei, Y., Leuschner, F., Gorbatov, R., Robbins, C.S., Iwamoto, Y., Thompson, B., Carlson, A.L., Heidt, T., Majmudar, M.D., Lasitschka, F., Etzrodt, M., Waterman, P., Waring, M.T., Chicoine, A.T., van der Laan, A.M., Niessen, H.W., Piek, J.J., Rubin, B.B., Butany, J., Stone, J.R., Katus, H.A., Murphy, S.A., Morrow, D.A., Sabatine, M.S., Vinegoni, C., Moskowitz, M.A., Pittet, M.J., Libby, P., Lin, C.P., Swirski, F.K., Weissleder, R., and Nahrendorf, M. 2012. Myocardial infarction accelerates atherosclerosis. Nature 487:325‐329. doi: 10.1038/nature11260.
  Dymecki, S.M. 1996. Flp recombinase promotes site‐specific DNA recombination in embryonic stem cells and transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 93:6191‐6196. doi: 10.1073/pnas.93.12.6191.
  Feil, R., Wagner, J., Metzger, D., and Chambon, P. 1997. Regulation of cre recombinase activity by mutated estrogen receptor ligand‐binding domains. Biochem. Biophys. Res. Commun. 237:752‐757. doi: 10.1006/bbrc.1997.7124.
  Fenno, L.E., Mattis, J., Ramakrishnan, C., Hyun, M., Lee, S.Y., He, M., Tucciarone, J., Selimbeyoglu, A., Berndt, A., Grosenick, L., Zalocusky, K.A., Bernstein, H., Swanson, H., Perry, C., Diester, I., Boyce, F.M., Bass, C.E., Neve, R., Huang, Z.J., and Deisseroth, K. 2014. Targeting cells with single vectors using multiple‐feature Boolean logic. Nat. Methods 11:763‐772. doi: 10.1038/nmeth.2996.
  Forni, P.E., Scuoppo, C., Imayoshi, I., Taulli, R., Dastrù, W., Sala, V., Betz, U.A.K., Muzzi, P., Martinuzzi, D., Vercelli, A.E., Kageyama, R., and Ponzetto, C. 2006. High levels of cre expression in neuronal progenitors cause defects in brain development leading to microencephaly and hydrocephaly. J. Neurosci. 26:9593‐9602. doi: 10.1523/JNEUROSCI.2815‐06.2006.
  Gangoda, L., Doerflinger, M., Lee, Y., Rahimi, A., Etemadi, N., Chau, D., Milla, L., O'Connor, L., and Puthalakath, H. 2012. Cre transgene results in global attenuation of the cAMP/PKA pathway. Cell Death Dis. 3:e365. doi: 10.1038/cddis.2012.110.
  Gossen, M. and Bujard, H. 1992. Tight control of gene expression in mammalian cells by tetracycline‐responsive promoters. Proc. Natl. Acad. Sci. U.S.A. 89:5547‐5551. doi: 10.1073/pnas.89.12.5547.
  Groth, A.C., Olivares, E.C., Thyagarajan, B., and Calos, M.P. 2000. A phage integrase directs efficient site‐specific integration in human cells. Proc. Natl. Acad. Sci. U.S.A. 97:5995‐6000. doi: 10.1073/pnas.090527097.
  Gu, H., Zou, Y.‐R., and Rajewsky, K. 1993. Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre‐loxP‐mediated gene targeting. Cell 73:1155‐1164. doi: 10.1016/0092‐8674(93)90644‐6.
  Gu, H., Marth, J.D., Orban, P.C., Mossmann, H., and Rajewsky, K. 1994. Deletion of a DNA polymerase beta gene segment in T cells using cell type‐specific gene targeting. Science 265:103‐106. doi: 10.1126/science.8016642.
  Hall, B., Limaye, A., and Kulkarni, A.B. 2009. Overview: Generation of gene knockout mice. Curr. Protoc. Cell Biol. 44:19.12.1‐19.12.17. doi: 10.1002/0471143030.cb1912s44.
  Hayashi, S. and McMahon, A.P. 2002. Efficient recombination in diverse tissues by a tamoxifen‐inducible form of cre: A tool for temporally regulated gene activation/inactivation in the mouse. Dev. Biol. 244:305‐318. doi: 10.1006/dbio.2002.0597.
  Heffner, C.S., Herbert Pratt, C., Babiuk, R.P., Sharma, Y., Rockwood, S.F., Donahue, L.R., Eppig, J.T., and Murray, S.A. 2012. Supporting conditional mouse mutagenesis with a comprehensive cre characterization resource. Nat. Commun. 3:1218. doi: 10.1038/ncomms2186.
  Indra, A.K., Warot, X., Brocard, J., Bornert, J.‐M., Xiao, J.‐H., Chambon, P., and Metzger, D. 1999. Temporally‐controlled site‐specific mutagenesis in the basal layer of the epidermis: Comparison of the recombinase activity of the tamoxifen‐inducible Cre‐ERT and Cre‐ERT2 recombinases. Nucleic Acids Res. 27:4324‐4327. doi: 10.1093/nar/27.22.4324.
  Jiao, K., Kulessa, H., Tompkins, K., Zhou, Y., Batts, L., Baldwin, H.S., and Hogan, B.L.M. 2003. An essential role of Bmp4 in the atrioventricular septation of the mouse heart. Genes Dev. 17:2362‐2367. doi: 10.1101/gad.1124803.
  Kellendonk, C., Tronche, F., Monaghan, A.‐P., Angrand, P.‐O., Stewart, F., and Schütz, G. 1996. Regulation of Cre recombinase activity by the synthetic steroid RU 486. Nucleic Acids Res. 24:1404‐1411. doi: 10.1093/nar/24.8.1404.
  Kistnert, A., Gossentt, M., Zimmermannt, F., Jerecict, J., Ullmer, C., Lubbert, H., and Bujard, H. 1996. Doxycycline‐mediated quantitative and tissue‐specific control of gene expression in transgenic mice. Genetics 93:10933‐10938.
  Koitabashi, N., Bedja, D., Zaiman, A.L., Pinto, Y.M., Zhang, M., Gabrielson, K.L., Takimoto, E., and Kassz, D.A. 2009. Avoidance of transient cardiomyopathy in Cardiomyocyte‐targeted Tamoxifen‐induced mercremer gene deletion models. Circ. Res. 105:12‐15. doi: 10.1161/CIRCRESAHA.109.198416.
  Kuhstoss, S. and Rao, R.N. 1991. Analysis of the integration function of the streptomycete bacteriophage phi C31. J. Mol. Biol. 222:897‐908. doi: 10.1016/0022‐2836(91)90584‐S.
  Lexow, J., Poggioli, T., Sarathchandra, P., Santini, M.P., and Rosenthal, N. 2013. Cardiac fibrosis in mice expressing an inducible myocardial‐specific Cre driver. Dis. Model. Mech. 6:1470‐1476. doi: 10.1242/dmm.010470.
  Li, Y., Choi, P.S., Casey, S.C., and Felsher, D.W. 2014. Activation of Cre Recombinase Alone Can Induce Complete Tumor Regression. PLoS One 9:e107589. doi: 10.1371/journal.pone.0107589.
  Littlewood, T.D., Hancock, D.C., Danielian, P.S., Parker, M.G., and Evan, G.I. 1995. A modified oestrogen receptor ligand‐binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res. 23:1686‐1690. doi: 10.1093/nar/23.10.1686.
  Loonstra, A., Vooijs, M., Beverloo, H.B., Allak, B.A., van Drunen, E., Kanaar, R., Berns, A., and Jonkers, J. 2001. Growth inhibition and DNA damage induced by Cre recombinase in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 98:9209‐9214. doi: 10.1073/pnas.161269798.
  McLeod, M., Craft, S., and Broach, J.R. 1986. Identification of the crossover site during FLP‐mediated recombination in the Saccharomyces cerevisiae plasmid 2 microns circle. Mol. Cell. Biol. 6:3357‐3367. doi: 10.1128/MCB.6.10.3357.
  Metzger, D., Clifford, J., Chiba, H., and Chambon, P. 1995. Conditional site‐specific recombination in mammalian cells using a ligand‐dependent chimeric Cre recombinase. Genetics 92:6991‐6995.
  Minamino, T., Gaussin, V., DeMayo, F.J., and Schneider, M.D. 2001. Inducible gene targeting in postnatal myocardium by cardiac‐specific expression of a hormone‐activated cre fusion protein. Circ. Res. 88:587‐592. doi: 10.1161/01.RES.88.6.587.
  Murray, S.A., Eppig, J.T., Smedley, D., Simpson, E.M., and Rosenthal, N. 2012. Beyond knockouts: Cre resources for conditional mutagenesis. Mamm. Genome 23:587‐599. doi: 10.1007/s00335‐012‐9430‐2.
  Muzumdar, M.D., Tasic, B., Miyamichi, K., Li, N., and Luo, L. 2007. A global double‐fluorescent cre reporter mouse. Genesis 45:593‐605. doi: 10.1002/dvg.20335.
  Nahrendorf, M., Swirski, F.K., Aikawa, E., Stangenberg, L., Wurdinger, T., Figueiredo, J.‐L., Libby, P., Weissleder, R., and Pittet, M.J. 2007. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 204:3037‐3047. doi: 10.1084/jem.20070885.
  Nakazawa, K., Quirk, M.C., Chitwood, R.A., Watanabe, M., Yeckel, M.F., Sun, L.D., Kato, A., Carr, C.A., Johnston, D., Wilson, M.A., and Tonegawa, S. 2002. Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science 297:211‐218. doi: 10.1126/science.1071795.
  Oka, T., Maillet, M., Watt, A.J., Schwartz, R.J., Aronow, B.J., Duncan, S.A., and Molkentin, J.D. 2006. Cardiac‐specific deletion of gata4 reveals its requirement for hypertrophy, compensation, and myocyte viability. Circ. Res. 98:837‐845. doi: 10.1161/01.RES.0000215985.18538.c4.
  Olivares, E.C., Hollis, R.P., Chalberg, T.W., Meuse, L., Kay, M.A., and Calos, M.P. 2002. Site‐specific genomic integration produces therapeutic Factor IX levels in mice. Nat. Biotechnol. 20:1124‐1128. doi: 10.1038/nbt753.
  Pinto, A.R., Paolicelli, R., Salimova, E., Gospocic, J., Slonimsky, E., Bilbao‐Cortes, D., Godwin, J.W., and Rosenthal, N.A. 2012. An abundant tissue macrophage population in the adult murine heart with a distinct alternatively‐activated macrophage profile. PLoS One 7:e36814. doi: 10.1371/journal.pone.0036814.
  Pinto, A.R., Godwin, J.W., Chandran, A., Hersey, L., Ilinykh, A., Debuque, R., Wang, L., and Rosenthal, N.A. 2014. Age‐related changes in tissue macrophages precede cardiac functional impairment. Aging 6:399‐413. doi: 10.18632/aging.100669.
  Pinto, A.R., Ilinykh, A., Ivey, M.J., Kuwabara, J.T., D'Antoni, M.L., Debuque, R.J., Chandran, A., Wang, L., Arora, K., Rosenthal, N.A., and Tallquist, M.D. 2016. Revisiting cardiac cellular composition. Circ. Res. 118:400‐409. doi: 10.1161/CIRCRESAHA.115.307778.
  Pugach, E.K., Richmond, P.A., Azofeifa, J.G., Dowell, R.D., and Leinwand, L.A. 2015. Prolonged Cre expression driven by the α‐myosin heavy chain promoter can be cardiotoxic. J. Mol. Cell. Cardiol. 86:54‐61. doi: 10.1016/j.yjmcc.2015.06.019.
  Ramirez‐Solis, R., Liu, P., and Bradley, A. 1995. Chromosome engineering in mice. Nature 378:720‐724. doi: 10.1038/378720a0.
  Rodríguez, C.I., Buchholz, F., Galloway, J., Sequerra, R., Kasper, J., Ayala, R., Stewart, A.F., and Dymecki, S.M. 2000. High‐efficiency deleter mice show that FLPe is an alternative to Cre‐loxP. Nat. Genet. 25:139‐140. doi: 10.1038/75973.
  Sanbe, A., Gulick, J., Hanks, M.C., Liang, Q., Osinska, H., and Robbins, J. 2003. Reengineering inducible cardiac‐specific transgenesis with an attenuated myosin heavy chain promoter. Circ. Res. 92:609‐616. doi: 10.1161/01.RES.0000065442.64694.9F.
  Sando, R., Baumgaertel, K., Pieraut, S., Torabi‐Rander, N., Wandless, T.J., Mayford, M., and Maximov, A. 2013. Inducible control of gene expression with destabilized Cre. Nat. Methods 10:1085‐1088. doi: 10.1038/nmeth.2640.
  Sauer, B. and Henderson, N. 1988. Site‐specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Genetics 85:5166‐5170.
  Sauer, B. and McDermott, J. 2004. DNA recombination with a heterospecific Cre homolog identified from comparison of the pac‐c1 regions of P1‐related phages. Nucleic Acids Res. 32:6086‐6095. doi: 10.1093/nar/gkh941.
  Schaft, J., Ashery‐Padan, R., van der Hoeven, F., Gruss, P., and Francis Stewart, A. 2001. Efficient FLP recombination in mouse ES cells and oocytes. Genesis 31:6‐10. doi: 10.1002/gene.1076.
  Schmidt, E.E., Taylor, D.S., Prigge, J.R., Barnett, S., and Capecchi, M.R. 2000. Illegitimate Cre‐dependent chromosome rearrangements in transgenic mouse spermatids. Proc. Natl. Acad. Sci. U.S.A. 97:13702‐13707. doi: 10.1073/pnas.240471297.
  Schnutgen, F., De‐Zolt, S., Van Sloun, P., Hollatz, M., Floss, T., Hansen, J., Altschmied, J., Seisenberger, C., Ghyselinck, N.B., and Ruiz, P., Chambon, P., Wurst, W., and von Melchner, H. 2005. Genomewide production of multipurpose alleles for the functional analysis of the mouse genome. Proc. Natl. Acad. Sci. U.S.A. 102:7221‐7226. doi: 10.1073/pnas.0502273102.
  Schreiber, H.A., Loschko, J., Karssemeijer, R.A., Escolano, A., Meredith, M.M., Mucida, D., Guermonprez, P., and Nussenzweig, M.C. 2013. Intestinal monocytes and macrophages are required for T cell polarization in response to Citrobacter rodentium. J. Exp. Med. 210:2025‐2039. doi: 10.1084/jem.20130903.
  Semprini, S., Troup, T.J., Kotelevtseva, N., King, K., Davis, J.R.E., Mullins, L.J., Chapman, K.E., Dunbar, D.R., and Mullins, J.J. 2007. Cryptic loxP sites in mammalian genomes: Genome‐wide distribution and relevance for the efficiency of BAC/PAC recombineering techniques. Nucleic Acids Res. 35:1402‐1410. doi: 10.1093/nar/gkl1108.
  Sheng, J., Ruedl, C., and Karjalainen, K. 2015. Most tissue‐resident macrophages except microglia are derived from fetal hematopoietic stem cells. Immunity 43:382‐393. doi: 10.1016/j.immuni.2015.07.016.
  Skarnes, W.C., Rosen, B., West, A.P., Koutsourakis, M., Bushell, W., Iyer, V., Mujica, A.O., Thomas, M., Harrow, J., Cox, T., Jackson, D., Severin, J., Biggs, P., Fu, J., Nefedov, M., de Jong, P.J., Stewart, A.F., and Bradley, A. 2011. A conditional knockout resource for the genome‐wide study of mouse gene function. Nature 474:337‐342. doi: 10.1038/nature10163.
  Smedley, D., Salimova, E., and Rosenthal, N. 2011. Cre recombinase resources for conditional mouse mutagenesis. Methods 53:411‐416. doi: 10.1016/j.ymeth.2010.12.027.
  Smith, A.J.H., De Sousa, M.A., Kwabi‐Addo, B., Heppell‐Parton, A., Impey, H., and Rabbitts, P. 1995. A site‐directed chromosomal translocation induced in embryonic stem cells by Cre‐loxP recombination. Nat. Genet. 9:376‐385. doi: 10.1038/ng0495‐376.
  Snippert, H.J., van der Flier, L.G., Sato, T., van Es, J.H., van den Born, M., Kroon‐Veenboer, C., Barker, N., Klein, A.M., van Rheenen, J., Simons, B.D., and Clevers, H. 2010. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143:134‐144. doi: 10.1016/j.cell.2010.09.016.
  Soukharev, S., Miller, J.L., and Sauer, B. 1999. Segmental genomic replacement in embryonic stem cells by double lox targeting. Nucleic Acids Res. 27:e21. doi: 10.1093/nar/27.18.e21.
  Sternberg, N. and Hamilton, D. 1981. Bacteriophage P1 site‐specific recombination: I. Recombination between loxP sites. J. Mol. Biol. 150:467‐486. doi: 10.1016/0022‐2836(81)90375‐2.
  Stranges, P.B., Watson, J., Cooper, C.J., Choisy‐Rossi, C.‐M., Stonebraker, A.C., Beighton, R.A., Hartig, H., Sundberg, J.P., Servick, S., Kaufmann, G., Fink, P.J., and Chervonsky, A.V. 2007. Elimination of antigen‐presenting cells and autoreactive t cells by fas contributes to prevention of autoimmunity. Immunity 26:629‐641. doi: 10.1016/j.immuni.2007.03.016.
  Swirski, F.K., Nahrendorf, M., Etzrodt, M., Wildgruber, M., Cortez‐Retamozo, V., Panizzi, P., Figueiredo, J.‐L., Kohler, R.H., Chudnovskiy, A., Waterman, P., Aikawa, E., Mempel, T.R., Libby, P., Weissleder, R., and Pittet, M.J. 2009. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325:612‐616. doi: 10.1126/science.1175202.
  Takata, Y., Kondo, S., Goda, N., Kanegae, Y., and Saito, I. 2011. Comparison of efficiency between FLPe and Cre for recombinase‐mediated cassette exchange in vitro and in adenovirus vector production. Genes Cells 16:765‐777. doi: 10.1111/j.1365‐2443.2011.01526.x.
  Thyagarajan, B., Guimarães, M.J., Groth, A.C., and Calos, M.P. 2000. Mammalian genomes contain active recombinase recognition sites. Gene 244:47‐54. doi: 10.1016/S0378‐1119(00)00008‐1.
  Thyagarajan, B., Olivares, E.C., Hollis, R.P., Ginsburg, D.S., and Calos, M.P. 2001. Site‐specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol. Cell. Biol. 21:3926‐3934. doi: 10.1128/MCB.21.12.3926‐3934.2001.
  Verrou, C., Zhang, Y., Zürn, C., Schamel, W.W.A., and Reth, M. 1999. Comparison of the tamoxifen regulated chimeric cre recombinases MerCreMer and CreMer. Biol. Chem. 380:1435‐1438. doi: 10.1515/BC.1999.184.
  Wallace, H.A., Marques‐Kranc, F., Richardson, M., Luna‐Crespo, F., Sharpe, J.A., Hughes, J., Wood, W.G., Higgs, D.R., and Smith, A.J. 2007. Manipulating the mouse genome to engineer precise functional syntenic replacements with human sequence. Cell 28:197‐209. doi: 10.1016/j.cell.2006.11.044.
  Zheng, B., Sage, M., Sheppeard, E.A., Jurecic, V., and Bradley, A. 2000. Engineering mouse chromosomes with Cre‐loxP: Range, efficiency, and somatic applications. Mol. Cell. Biol. 20:648‐655. doi: 10.1128/MCB.20.2.648‐655.2000.
Internet Resources‐and‐faculty/tools/cre‐repository
  Repository containing Cre‐expressing strains, inducible Cre strains, Cre reporter strains, and loxP‐flanked (floxed) strains.
PDF or HTML at Wiley Online Library