Application of SWATH Proteomics to Mouse Biology

Yibo Wu1, Evan G. Williams1, Ruedi Aebersold2

1 Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, 2 Faculty of Science, University of Zurich, Zurich
Publication Name:  Current Protocols in Mouse Biology
Unit Number:   
DOI:  10.1002/cpmo.28
Online Posting Date:  June, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

The quantitative measurement of the proteome has been shown to yield new insights into physiology and cell biology that cannot be determined from the genome and transcriptome because the quantitative relationship between transcriptome and proteome is complex. MS‐based proteomics techniques, such as SWATH‐MS, have recently advanced to the point at which they may be reliably applied by biologists who are not specialists in mass spectrometry. Here we provide standard protocols for preparation of tissue samples for input into the SWATH‐MS analytical pipeline. These protocols are designed for high‐throughput processing of tissues with ≥5 mg of sample available for analysis. Studies with extremely limited amounts of tissue should consider PCT‐SWATH. An experienced single user should be able to process 48 samples per day for injection into the mass spectrometer, or up to 144 samples a week. The machine time necessary for running these samples with SWATH is approximately 1.5 hr per sample. Data acquisition protocols are also provided. © 2017 by John Wiley & Sons, Inc.

Keywords: proteomics; systems biology; mass spectrometry

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Protein Preparation for SWATH‐MS
  • Basic Protocol 2: Peptide Preparation for SWATH‐MS
  • Basic Protocol 3: Data‐Dependent Acquisition and Spectral Library Generation Protocol
  • Basic Protocol 4: Data‐Independent Acquisition and Targeted “Peptide‐Centric” Data Extraction Protocol
  • Reagents and Solutions
  • Commentary
  • Literature Cited
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Protein Preparation for SWATH‐MS

  Materials
  • RIPA‐M buffer (see recipe), freshly prepared
  • Urea‐T buffer (see recipe), freshly prepared
  • Tissue sample
  • Protein quantification assay kit: e.g., bicinchoninic acid (BCA) or Bradford
  • Homogenizer (Dounce pestle recommended, but a metallic bead homogenizer can also work)
  • Refrigerated centrifuge (temperature range, ≤4°C; capacity, ≥24 2‐ml tubes; rotation speed, ≥20,000 × g)
  • Bath sonicator (recommended)
  • Vortex mixer

Basic Protocol 2: Peptide Preparation for SWATH‐MS

  Materials
  • Protein samples (e.g., from protocol 1)
  • Acetone (HPLC‐grade), cooled to −20°C
  • Urea in 0.1 M ammonium bicarbonate (NH 4HCO 3)
  • Ammonium bicarbonate (NH 4HCO 3)
  • Dithioethreitol (DTT)
  • Indole‐3‐acetic acid (IAA)
  • Trypsin (sequencing‐grade)
  • Methanol (HPLC‐grade)
  • Acetonitrile (ACN; HPLC‐grade)
  • Formic acid (FA; 98% to 100%; see annotation to step 24, below)
  • Trifluoroacetic acid (TFA)
  • Indexed Retention Time peptides (iRT; from Biognosys)
  • Heated shaker plate (37°C)
  • Refrigerated centrifuge (temperature range, ≤4°C; capacity, ≥24 2‐ml tubes; rotation speed, ≥20,000 × g)
  • Silica C18 columns (e.g., MacroSpin Columns from The Nest Group)
  • Vacuum evaporator (e.g., SpeedVac)
  • Vials for mass spectrometry
  • Mass spectrometer
  • Vortex mixer
  • NanoDrop microspectrophotometer
  • Bath sonicator

Basic Protocol 3: Data‐Dependent Acquisition and Spectral Library Generation Protocol

  Materials
  • Peptide mixture (e.g., from protocol 2)
  • Buffer A: 2% ACN, 0.1% FA solution in H 2O
  • Buffer B: 98% ACN solution with 0.1% FA
  • pH 3‐10 IPG strip (Amersham Biosciences)
  • 3100 OFFGEL Fractionator (Agilent Technologies)
  • Sciex 5600 TripleTOF mass spectrometer
  • Eksigent NanoLC Ultra 2D Plus HPLC (interfaced to the mass spectrometer)
  • C18 column (Magic, 3 μm; from New Objective)
  • Analytical column (e.g, PicoFrit; Thermo Fisher Scientific; with 75‐μm diameter)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Aebersold, R., & Mann, M. (2016). Mass‐spectrometric exploration of proteome structure and function. Nature, 537, 347–355. doi: 10.1038/nature19949.
  Choi, M., Chang, C. Y., Clough, T., Broudy, D., Killeen, T., MacLean, B., & Vitek, O. (2014). MSstats: An R package for statistical analysis of quantitative mass spectrometry‐based proteomic experiments. Bioinformatics, 30, 2524–2526. doi: 10.1093/bioinformatics/btu305.
  Craig, R., Cortens, J. C., Fenyo, D., & Beavis, R. C. (2006). Using annotated peptide mass spectrum libraries for protein identification. Journal of Proteome Research, 5, 1843–1849. doi: 10.1021/pr0602085.
  Elias, J. E., & Gygi, S. P. (2007). Target‐decoy search strategy for increased confidence in large‐scale protein identifications by mass spectrometry. Nature Methods, 4, 207–214. doi: 10.1038/nmeth1019.
  Escher, C., Reiter, L., MacLean, B., Ossola, R., Herzog, F., Chilton, J., … Rinner, O. (2012). Using iRT, a normalized retention time for more targeted measurement of peptides. Proteomics, 12, 1111–1121. doi: 10.1002/pmic.201100463.
  Frewen, B. E., Merrihew, G. E., Wu, C. C., Noble, W. S., & MacCoss, M. J. (2006). Analysis of peptide MS/MS spectra from large‐scale proteomics experiments using spectrum libraries. Analytical Chemistry, 78, 5678–5684. doi: 10.1021/ac060279n.
  Gillet, L. C., Leitner, A., & Aebersold, R. (2016). Mass spectrometry applied to bottom‐up proteomics: Entering the high‐throughput era for hypothesis testing. Annual Review of Analytical Chemistry (Palo Alto, Calif.), 9, 449–472. doi: 10.1146/annurev‐anchem‐071015‐041535.
  Gillet, L. C., Navarro, P., Tate, S., Röst, H., Selevsek, N., Reiter, L., … Aebersold, R. (2012). Targeted data extraction of the MS/MS spectra generated by data‐independent acquisition: A new concept for consistent and accurate proteome analysis. Molecular & Cellular Proteomics, 11, O111 016717. doi: 10.1074/mcp.O111.016717.
  Keller, A., Eng, J., Zhang, N., Li, X. J., & Aebersold, R. (2005). A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Molecular Systems Biology, 1, 2005 0017. doi: 10.1038/msb4100024.
  Kessner, D., Chambers, M., Burke, R., Agus, D., & Mallick, P. (2008). ProteoWizard: Open source software for rapid proteomics tools development. Bioinformatics, 24, 2534–2536. doi: 10.1093/bioinformatics/btn323.
  Lam, H., Deutsch, E. W., Eddes, J. S., Eng, J. K., King, N., Stein, S. E., & Aebersold, R. (2007). Development and validation of a spectral library searching method for peptide identification from MS/MS. Proteomics, 7, 655–667. doi: 10.1002/pmic.200600625.
  Picotti, P., Bodenmiller, B., Mueller, L. N., Domon, B., & Aebersold, R. (2009). Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell, 138, 795–806. doi: 10.1016/j.cell.2009.05.051.
  Reiter, L., Claassen, M., Schrimpf, S. P., Jovanovic, M., Schmidt, A., Buhmann, J. M., … Aebersold, R. (2009). Protein identification false discovery rates for very large proteomics data sets generated by tandem mass spectrometry. Molecular & Cellular Proteomics, 8, 2405–2417. doi: 10.1074/mcp.M900317‐MCP200.
  Reiter, L., Rinner, O., Picotti, P., Huttenhain, R., Beck, M., Brusniak, M. Y., … Aebersold, R. (2011). mProphet: Automated data processing and statistical validation for large‐scale SRM experiments. Nature Methods, 8, 430–435. doi: 10.1038/nmeth.1584.
  Rosenberger, G., Koh, C. C., Guo, T., Röst, H. L., Kouvonen, P., Collins, B. C., … Aebersold, R. (2014a). A repository of assays to quantify 10,000 human proteins by SWATH‐MS. Scientific Data, 1, 140031. doi: 10.1038/sdata.2014.31.
  Rosenberger, G., Ludwig, C., Röst, H. L., Aebersold, R., & Malmstrom, L. (2014b). aLFQ: An R‐package for estimating absolute protein quantities from label‐free LC‐MS/MS proteomics data. Bioinformatics, 30, 2511–2513. doi: 10.1093/bioinformatics/btu200.
  Röst, H. L., Aebersold, R., & Schubert, O. T. (2016a). Automated SWATH data analysis using targeted extraction of ion chromatograms. Methods in Molecular Biology, 1550, 289‐307. doi: 10.1007/978‐1‐4939‐6747‐6_20.
  Röst, H. L., Liu, Y., D'Agostino, G., Zanella, M., Navarro, P., Rosenberger, G., … Aebersold, R. (2016b). TRIC: An automated alignment strategy for reproducible protein quantification in targeted proteomics. Nature Methods, 13, 777–783. doi: 10.1038/nmeth.3954.
  Röst, H. L., Rosenberger, G., Navarro, P., Gillet, L., Miladinovic, S. M., Schubert, O. T., … Aebersold, R. (2014). OpenSWATH enables automated, targeted analysis of data‐independent acquisition MS data. Nature Biotechnology, 32, 219–223. doi: 10.1038/nbt.2841.
  Schubert, O. T., Gillet, L. C., Collins, B. C., Navarro, P., Rosenberger, G., Wolski, W. E., … Aebersold, R. (2015). Building high‐quality assay libraries for targeted analysis of SWATH MS data. Nature Protocols, 10, 426–441. doi: 10.1038/nprot.2015.015.
  Shao, S., Guo, T., Koh, C. C., Gillessen, S., Joerger, M., Jochum, W., & Aebersold, R. (2015). Minimal sample requirement for highly multiplexed protein quantification in cell lines and tissues by PCT‐SWATH mass spectrometry. Proteomics, 15, 3711–3721. doi: 10.1002/pmic.201500161.
  Shteynberg, D., Deutsch, E. W., Lam, H., Eng, J. K., Sun, Z., Tasman, N., … Nesvizhskii, A. I. (2011). iProphet: Multi‐level integrative analysis of shotgun proteomic data improves peptide and protein identification rates and error estimates. Molecular & Cellular Proteomics, 10, M111 007690. doi: 10.1074/mcp.M111.007690.
  Teo, G., Kim, S., Tsou, C. C., Collins, B., Gingras, A. C., Nesvizhskii, A. I., & Choi, H. (2015). mapDIA: Preprocessing and statistical analysis of quantitative proteomics data from data independent acquisition mass spectrometry. Journal of Proteomics, 129, 108–120. doi: 10.1016/j.jprot.2015.09.013.
  Ting, Y. S., Egertson, J. D., Payne, S. H., Kim, S., MacLean, B., Kall, L., … MacCoss, M. J. (2015). Peptide‐centric proteome analysis: An alternative strategy for the analysis of tandem mass spectrometry data. Molecular & Cellular Proteomics, 14, 2301–2307. doi: 10.1074/mcp.O114.047035.
  Toprak, U. H., Gillet, L. C., Maiolica, A., Navarro, P., Leitner, A., & Aebersold, R. (2014). Conserved peptide fragmentation as a benchmarking tool for mass spectrometers and a discriminating feature for targeted proteomics. Molecular & Cellular Proteomics, 13, 2056–2071. doi: 10.1074/mcp.O113.036475.
  Tsou, C. C., Avtonomov, D., Larsen, B., Tucholska, M., Choi, H., Gingras, A. C, … Nesvizhskii, A. I. (2015). DIA‐Umpire: Comprehensive computational framework for data‐independent acquisition proteomics. Nature Methods, 12, 258–264. doi: 10.1038/nmeth.3255.
  Williams, E. G., Wu, Y., Jha, P., Dubuis, S., Blattmann, P., Argmann, C. A., … Auwerx, J. (2016). Systems proteomics of liver mitochondria function. Science, 352, aad0189. doi: 10.1126/science.352.6282.247‐b.
  Wu, Y., Williams, E. G., Dubuis, S., Mottis, A., Jovaisaite, V., Houten, S. M., … Aebersold, R. (2014). Multilayered genetics and omics dissection of mitochondrial activity in a mouse reference population. Cell, 158, 1415–1430. doi: 10.1016/j.cell.2014.07.039.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library