Using Vascular Landmarks to Orient 3D Optical Coherence Tomography Images of the Mouse Eye

Mark P. Krebs1

1 The Jackson Laboratory, Bar Harbor
Publication Name:  Current Protocols in Mouse Biology
Unit Number:   
DOI:  10.1002/cpmo.32
Online Posting Date:  September, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Comparing 3D structural information obtained by optical coherence tomography (OCT) requires accurate alignment of images acquired from individual subjects. Despite the widespread use of OCT to image the anterior and posterior mouse eye, few approaches to align the resulting image data have been described, in part due to a lack of well‐characterized landmarks that are suitable for alignment. Here, we provide an OCT acquisition and analysis protocol that incorporates the use of the long posterior ciliary arteries as landmarks. In mammals, these two large choroidal vessels lie in a plane approximately parallel to the horizon. Our OCT imaging approach resolves these vessels in the mouse eye and suggests that their location is reproducible. The protocol may be useful for preparing 3D OCT data to compare experimental cohorts of mice and for standardizing results from independent research laboratories. © 2017 by John Wiley & Sons, Inc.

Keywords: mouse models; noninvasive imaging; optical coherence tomography; Fiji/ImageJ analysis; atlas landmarks

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Strategic Planning
  • Basic Protocol 1: Three‐Dimensional Optical Coherence Tomography of the Posterior Mouse Eye
  • Support Protocol 1: Measuring Retinal Thicknesses Following Rotational Correction
  • Support Protocol 2: Adjusting the Acquisition Angle to Align LPCAs Horizontally
  • Support Protocol 3: Rotating 3D OCT Data for Analysis in ImageJ/Fiji
  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Three‐Dimensional Optical Coherence Tomography of the Posterior Mouse Eye

  Materials
  • Mice to be studied
  • 1% atropine sulfate ophthalmic solution drops (Akorn)
  • Ketamine/xylazine cocktail for anesthesia [1.6 ml ketamine (100 mg/ml), 1.6 ml xylazine (20 mg/ml), and 6.8 ml sodium chloride (0.9% w/v)]
  • GenTeal Severe Dry Eye Relief (Alcon Laboratories)
  • Systane Ultra Lubricant Eye Drops (Alcon Laboratories, Fort Worth, TX)
  • Bioptigen Envisu R2200 spectral domain OCT imaging system (Leica Microsystems GmbH)
  • InVivoVue 1.4.0.4260 Software
  • Personal computer (Mac OS X or Windows‐based) with good graphics capability, 64‐bit
  • Installed Fiji freeware, accepting all updates except developer tools on installation
  • Gloves for handling mice
  • Animal scale
  • 1‐ml syringes and 26‐G needles for injecting anesthesia
  • Sugi surgical spears (Kettenbach LP)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

  Abramoff, M. D., Garvin, M. K., & Sonka, M. (2010). Retinal imaging and image analysis. IEEE Transactions on Medical Imaging, 3, 169–208. doi: 10.1109/RBME.2010.2084567.
  Carpanini, S. M., McKie, L., Thomson, D., Wright, A. K., Gordon, S. L., Roche, S. L., … Jackson, I. J. (2014). A novel mouse model of Warburg Micro syndrome reveals roles for RAB18 in eye development and organisation of the neuronal cytoskeleton. Disease Models & Mechanisms, 7(6), 711–722. doi: 10.1242/dmm.015222.
  Cohn, B. A., Collin, S. P., Wainwright, P. C., & Schmitz, L. (2015). Retinal topography maps in R: New tools for the analysis and visualization of spatial retinal data. Journal of Vision, 15(9), 19. doi: 10.1167/15.9.19.
  Collin, G. B., Hubmacher, D., Charette, J. R., Hicks, W. L., Stone, L., Yu, M., … Nishina, P. M. (2015). Disruption of murine Adamtsl4 results in zonular fiber detachment from the lens and in retinal pigment epithelium dedifferentiation. Human Molecular Genetics, 24(24), 6958–6974. doi: 10.1093/hmg/ddv399.
  Kiel, J. W. (2010). In The Ocular Circulation. San Rafael (CA).
  Krebs, M. P., Xiao, M., Sheppard, K., Hicks, W., & Nishina, P. M. (2016). Bright‐field imaging and optical coherence tomography of the mouse posterior eye. Methods in Molecular Biology, 1438, 395–415. doi: 10.1007/978‐1‐4939‐3661‐8_20.
  Low, B. E., Krebs, M. P., Joung, J. K., Tsai, S. Q., Nishina, P. M., & Wiles, M. V. (2014). Correction of the Crb1rd8 allele and retinal phenotype in C57BL/6N mice via TALEN‐mediated homology‐directed repair. Investigative Ophthalmology and Visual Science, 55(1), 387–395. doi: 10.1167/iovs.13‐13278.
  Luhmann, U. F., Lange, C. A., Robbie, S., Munro, P. M., Cowing, J. A., Armer, H. E., … Ali, R. R. (2012). Differential modulation of retinal degeneration by Ccl2 and Cx3cr1 chemokine signalling. PloS One, 7(4), e35551. doi: 10.1371/journal.pone.0035551.
  Mehalow, A. K., Kameya, S., Smith, R. S., Hawes, N. L., Denegre, J. M., Young, J. A., … Nishina, P. M. (2003). CRB1 is essential for external limiting membrane integrity and photoreceptor morphogenesis in the mammalian retina. Human Molecular Genetics, 12(17), 2179–2189. doi: 10.1093/hmg/ddg232.
  Ninomiya, H., & Inomata, T. (2006). Microvasculature of the mouse eye: Scanning electron microscopy of vascular corrosion casts. Journal of Experimental Animal Science, 43(3), 11. doi: 10.1016/j.jeas.2006.05.002.
  Park, H., Qazi, Y., Tan, C., Jabbar, S. B., Cao, Y., Schmid, G., & Pardue, M. T. (2012). Assessment of axial length measurements in mouse eyes. Optometry and Vision Science, 89(3), 296–303. doi: 10.1097/OPX.0b013e31824529e5.
  Schindelin, J., Arganda‐Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … Cardona, A. (2012). Fiji: An open‐source platform for biological‐image analysis. Nature Methods, 9(7), 676–682. doi: 10.1038/nmeth.2019.
  Schindelin, J., Rueden, C. T., Hiner, M. C., & Eliceiri, K. W. (2015). The ImageJ ecosystem: An open platform for biomedical image analysis. Molecular Reproduction and Development, 82(7‐8), 518–529. doi: 10.1002/mrd.22489.
  Sterratt, D. C., Lyngholm, D., Willshaw, D. J., & Thompson, I. D. (2013). Standard anatomical and visual space for the mouse retina: Computational reconstruction and transformation of flattened retinae with the Retistruct package. PLoS Computational Biology, 9(2), e1002921. doi: 10.1371/journal.pcbi.1002921.
  Wei, W., Elstrott, J., & Feller, M. B. (2010). Two‐photon targeted recording of GFP‐expressing neurons for light responses and live‐cell imaging in the mouse retina. Nature Protocols, 5(7), 1347–1352. doi: 10.1038/nprot.2010.106.
  Zinn, K. M. (1988). Clinical atlas of peripheral retinal disorders. New York, NY: Springer‐Verlag.
Internet Resources
  http://fiji.sc/Fiji.
  This site may be used to install the image analysis software Fiji.
  https://imagej.nih.gov/ij/docs/macro_reference_guide.pdf.
  This site provides a manual describing how to program macros in ImageJ/Fiji.
  http://fiji.sc/List_of_update_sites.
  This site may be used to install the OCT Volume Averager plugin from the Fiji update site. Updates may be added to any Fiji installation by launching the ImageJ updater with Help>Update Fiji, choosing Manage Update Sites, and selecting the JAX Eye update. Following the update, OCT Volume Averager will appear on the Plugin dropdown window of Fiji.
  https://github.com/jaxcs/octvolavg.
  This site provides the source code corresponding to OCT Volume Averager available at GitHub. It is unnecessary to obtain this file unless further development of the plugin is desired.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library