Assessing Sociability, Social Memory, and Pup Retrieval in Mice

Annemarie Zimprich1, Jörn Niessing2, Lior Cohen3, Lillian Garrett4, Jan Einicke4, Bettina Sperling4, Mathias V. Schmidt5, Sabine M. Hölter1

1 Developmental Genetics, Technische Universität München‐Weihenstephan, Helmholtz Zentrum München, Neuherberg, 2 Department of Synapses, Circuits, and Plasticity, Max Planck Institute of Neurobiology, Munich, 3 Sagol Department of Neurobiology, University of Haifa, Haifa, 4 Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, 5 Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich
Publication Name:  Current Protocols in Mouse Biology
Unit Number:   
DOI:  10.1002/cpmo.36
Online Posting Date:  December, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Adaptive social behavior is important in mammals, both for the well‐being of the individual and for the thriving of the species. Dysfunctions in social behavior occur in many neurodevelopmental and psychiatric diseases, and research into the genetic components of disease‐relevant social deficits can open up new avenues for understanding the underlying biological mechanisms and therapeutic interventions. Genetically modified mouse models are particularly useful in this respect, and robust experimental protocols are needed to reliably assess relevant social behavior phenotypes. Here we describe in detail three protocols to quantitatively measure sociability, one of the most frequently investigated social behavior phenotypes in mice, using a three‐chamber sociability test. These protocols can be extended to also assess social memory. In addition, we provide a detailed protocol on pup retrieval, which is a particularly robust maternal behavior amenable to various scientific questions. © 2017 by John Wiley & Sons, Inc.

Keywords: social behavior; pup retrieval; three‐chamber sociability cage; social memory; mice

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Pup Retrieval Assay to Test for Parental Responsiveness
  • Basic Protocol 2: Measuring Sociability in the Three‐Chamber Sociability Cage With Video Tracking and Ovariectomized Females as Stimulus Mice
  • Alternate Protocol 1: Measuring Social Interaction in the Three‐Chamber Sociability Cage by a Human Observer
  • Alternate Protocol 2: Measuring Social Interaction in the Three‐Chamber Sociability Test with a Workshop Apparatus and Juvenile Versus Inanimate Object as Stimuli
  • Support Protocol 1: Measuring Social Memory in the Three‐Chamber Sociability Cage
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Pup Retrieval Assay to Test for Parental Responsiveness

  Materials
  • Adult female mice of interest
  • 5 pups for testing (postnatal day 3 to 7 [P3–P7])
  • Standard mouse cage with fresh woodchip or paper bedding (e.g., 26 cm × 42 cm)
  • Clean red transparent plastic house (mock nest; e.g., Plexx BV)
  • Sound‐attenuated testing room with adjustable light source
  • Lux meter
  • Video camera installed for top view
  • Timer
  • Ultrasound microphone for monitoring USV emission (optional)

Basic Protocol 2: Measuring Sociability in the Three‐Chamber Sociability Cage With Video Tracking and Ovariectomized Females as Stimulus Mice

  Materials
  • Experimental animals
  • Stimulus animals (e.g., OVX females purchased from Charles River)
  • Disinfectant solution (e.g., Pursept‐A Xpress)
  • Data sheet
  • Sound‐attenuated testing room with adjustable light source
  • Three‐chamber sociability cage (e.g., Noldus)
  • Video camera
  • Video tracking system (e.g., Noldus EthoVision)
  • Video recording program (optional; e.g., Noldus MPEG Recorder)
  • Lux meter

Alternate Protocol 1: Measuring Social Interaction in the Three‐Chamber Sociability Cage by a Human Observer

  Materials
  • Experimental and stimulus mice (see protocol 2)
  • Disinfectant solution (e.g., Pursept‐A Xpress)
  • Handheld computer (e.g., Psion Workabout) with event logging software (e.g., Noldus Pocket Observer)
  • Data sheet (see protocol 2)
  • Sound‐attenuated testing room with adjustable light source
  • Lux meter
  • Sociability cage (see protocol 2)

Alternate Protocol 2: Measuring Social Interaction in the Three‐Chamber Sociability Test with a Workshop Apparatus and Juvenile Versus Inanimate Object as Stimuli

  Materials
  • Experimental mice
  • Juvenile mice for social interaction
  • Test room equipped with adjustable lights for the test chamber
  • Three‐chamber interaction apparatus
  • Sawdust bedding
  • Two cameras above the apparatus connected to a computer
  • Lux meter
  • Tracking software (e.g., ANY‐maze or EthoVision) installed on the computer
  • Two round wire cages (e.g., Spectrum Diversified Designs, Galaxy Cup)
  • Objects to weigh down the wire cages
  • Dummy (toy) mice (non‐social object)

Support Protocol 1: Measuring Social Memory in the Three‐Chamber Sociability Cage

  Additional Materials (also see protocol 4)
  • Mice not previously encountered
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Berton, O., McClung, C. A., Dileone, R. J., Krishnan, V., Renthal, W., Russo, S. J., … Nestler, E. J. (2006). Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science, 311, 864–868. doi: 10.1126/science.1120972
  Bielsky, I. F., & Young, L. J. (2004). Oxytocin, vasopressin, and social recognition in mammals. Peptides, 25, 1565–1574. doi: 10.1016/j.peptides.2004.05.019
  Brooks, L. R., Le, C. D., Chung, W. C., & Tsai, P. S. (2012). Maternal behavior in transgenic mice with reduced fibroblast growth factor receptor function in gonadotropin‐releasing hormone neurons. Behavioral and Brain Functions: BBF, 8, 47. doi: 10.1186/1744‐9081‐8‐47
  Cohen, L., Rothschild, G., & Mizrahi, A. (2011). Multisensory integration of natural odors and sounds in the auditory cortex. Neuron, 72, 357–369. doi: 10.1016/j.neuron.2011.08.019
  Dulac, C., O'Connell, L. A., & Wu, Z. (2014). Neural control of maternal and paternal behaviors. Science, 345, 765–770. doi: 10.1126/science.1253291
  Ferguson, J. N., Young, L. J., & Insel, T. R. (2002). The neuroendocrine basis of social recognition. Frontiers in Neuroendocrinology, 23, 200–224. doi: 10.1006/frne.2002.0229
  File, S. E., & Seth, P. (2003). A review of 25 years of the social interaction test. European Journal of Pharmacology, 463, 35–53. doi: 10.1016/S0014‐2999(03)01273‐1
  Gheusi, G., Bluthe, R. M., Goodall, G., & Dantzer, R. (1994). Social and individual recognition in rodents: Methodological aspects and neurobiological bases. Behavioural Processes, 33, 59–87. doi: 10.1016/0376‐6357(94)90060‐4
  Golden, S. A., Covington, H. E., 3rd, Berton, O., & Russo, S. J. (2011). A standardized protocol for repeated social defeat stress in mice. Nature Protocols, 6, 1183–1191. doi: 10.1038/nprot.2011.361
  Hartmann, J., Wagner, K. V., Dedic, N., Marinescu, D., Scharf, S. H., Wang, X. D., … Schmidt, M. V. (2012). Fkbp52 heterozygosity alters behavioral, endocrine and neurogenetic parameters under basal and chronic stress conditions in mice. Psychoneuroendocrinology, 37, 2009–2021. doi: 10.1016/j.psyneuen.2012.04.017
  Hölter, S. M., Garrett, L., Einicke, J., Sperling, B., Dirscherl, P., Zimprich, A., … Wurst, W. (2015). Assessing cognition in mice. Current Protocols in Mouse Biology, 5, 331–358. doi: 10.1002/9780470942390.mo150068
  Insel, T. R., & Winslow, J. T. (1998). Serotonin and neuropeptides in affiliative behaviors. Biological Psychiatry, 44, 207–219. doi: 10.1016/S0006‐3223(98)00094‐8
  Kohl, C., Wang, X. D., Grosse, J., Fournier, C., Harbich, D., Westerholz, S., … Schmidt, M. V. (2015). Hippocampal neuroligin‐2 links early‐life stress with impaired social recognition and increased aggression in adult mice. Psychoneuroendocrinology, 55, 128–143. doi: 10.1016/j.psyneuen.2015.02.016
  Krasnegor, N. A., & Bridges, R. S. (1990). Mammalian parenting: Biochemical, neurobiological and behavioural determinants. Oxford, United Kingdom: Oxford University Press.
  Liu, R. C., & Schreiner, C. E. (2007). Auditory cortical detection and discrimination correlates with communicative significance. PLoS Biology, 5, e173. doi: 10.1371/journal.pbio.0050173
  Marlin, B. J., Mitre, M., D'Amour, J. A., Chao, M. V., & Froemke, R. C. (2015). Oxytocin enables maternal behaviour by balancing cortical inhibition. Nature, 520, 499–504. doi: 10.1038/nature14402
  Masana, M., Su, Y. A., Liebl, C., Wang, X. D., Jansen, L., Westerholz, S., … Muller, M. B. (2014). The stress‐inducible actin‐interacting protein DRR1 shapes social behavior. Psychoneuroendocrinology, 48, 98–110. doi: 10.1016/j.psyneuen.2014.06.009
  Moy, S. S., Nadler, J. J., Perez, A., Barbaro, R. P., Johns, J. M., Magnuson, T. R., … Crawley, J. N. (2004). Sociability and preference for social novelty in five inbred strains: An approach to assess autistic‐like behavior in mice. Genes, Brain, and Behavior, 3, 287–302. doi: 10.1111/j.1601‐1848.2004.00076.x
  Nadler, J. J., Moy, S. S., Dold, G., Trang, D., Simmons, N., Perez, A., … Crawley, J. N. (2004). Automated apparatus for quantitation of social approach behaviors in mice. Genes, Brain, and Behavior, 3, 303–314. doi: 10.1111/j.1601‐183X.2004.00071.x
  Noirot, E. (1966). Ultra‐sounds in young rodents. I. Changes with age in albino mice. Animal Behaviour, 14, 459–462. doi: 10.1016/S0003‐3472(66)80045‐3
  Noirot, E. (1972). Ultrasounds and maternal behavior in small rodents. Developmental Psychobiology, 5, 371–387. doi: 10.1002/dev.420050410
  Numan, M., & Insel, T. R. (2003). The neurobiology of parental behavior (Vol. 1). New York: Springer.
  Richter, K., Wolf, G., & Engelmann, M. (2005). Social recognition memory requires two stages of protein synthesis in mice. Learning & Memory, 12, 407–413. doi: 10.1101/lm.97505
  Sewell, G. D. (1970). Ultrasonic communication in rodents. Nature, 227, 410. doi: 10.1038/227410a0
  Sheleg, M., Yu, Q., Go, C., Wagner, G. C., Kusnecov, A. W., & Zhou, R. (2017). Decreased maternal behavior and anxiety in ephrin‐A5‐/‐ mice. Genes, Brain, and Behavior, 16, 271–284. doi: 10.1111/gbb.12319
  Silva, M. R., Bernardi, M. M., & Felicio, L. F. (2001). Effects of dopamine receptor antagonists on ongoing maternal behavior in rats. Pharmacology, Biochemistry, and Behavior, 68, 461–468. doi: 10.1016/S0091‐3057(01)00471‐3
  Umemura, S., Imai, S., Mimura, A., Fujiwara, M., & Ebihara, S. (2015). Impaired maternal behavior in Usp46 mutant mice: A model for trans‐generational transmission of maternal care. PLoS One, 10, e0136016. doi: 10.1371/journal.pone.0136016
  Winslow, J. T. (2003). Mouse social recognition and preference. Current Protocols in Neuroscience, 22, 8.16.1‐8.16.16. doi: 10.1002/0471142301.ns0816s22
  Zheng, Q. Y., Johnson, K. R., & Erway, L. C. (1999). Assessment of hearing in 80 inbred strains of mice by ABR threshold analyses. Hearing Research, 130, 94–107. doi: 10.1016/S0378‐5955(99)00003‐9
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library