Unnatural Nucleosides with Unusual Base Pairing Properties

Donald E. Bergstrom1

1 Purdue University, West Lafayette, Indiana
Publication Name:  Current Protocols in Nucleic Acid Chemistry
Unit Number:  Unit 1.4
DOI:  10.1002/0471142700.nc0104s37
Online Posting Date:  June, 2009
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Synthetic modified nucleosides designed to pair in unusual ways with natural nucleobases have many potential applications in biology and biotechnology. This overview lays the foundation for future protocol units on synthesis and application of unnatural bases, with particular emphasis on unnatural base analogs that mimic natural bases in size, shape, and biochemical processing. Topics covered include base pairs with alternative H‐bonding schemes, dimensionally expanded base pairs, hydrophobic base pairs, metal‐ligated bases, degenerate bases, universal nucleosides, and triplex constituents. Curr. Protoc. Nucleic Acid Chem. 37:1.4.1‐1.4.32. © 2009 by John Wiley & Sons, Inc.

Keywords: nucleoside; mimetic; nonpolar; degenerate; universal

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Base Pairs with Alternative Hydrogen‐Bonding Patterns
  • Expanded Base Pairs
  • Non‐Hydrogen‐Bonding Base Pairs
  • Base Pairs Combining Non‐Hydrogen‐Bonding and Hydrogen‐Bonding Regions for RNA Transcription
  • Stacking Base Pairs
  • Mimics for Probing DNA Damage
  • Metal‐Mediated Association of Ligand Nucleobase Mimics
  • Covalent Base Pair Analogs
  • Degenerate Bases
  • Universal Nucleosides
  • Triplex Constituents
  • Modifying Natural Bases to Tune Pairing Affinity
  • Base Pair Recognition
  • Conclusion
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Adelfinskaya, O., Wu, W., Davisson, V.J., and Bergstrom, D.E. 2005a. Synthesis and structural analysis of oxadiazole carboxamide deoxyribonucleoside analogs. Nucleosides Nucleotides Nucleic Acids 24:1919‐1945.
   Adelfinskaya, O., Nashine, V.C., Bergstrom, D.E., and Davisson, V.J. 2005b. Efficient primer strand extension beyond oxadiazole carboxamide nucleobases. J. Am. Chem. Soc. 127:16000‐16001.
   Aketani, S., Tanaka, K., Yamamoto, K., Ishihama, A., Cao, H., Tengeiji, A., Hiraoka, S., Shiro, M., and Shionoya, M. 2002. Syntheses and structure‐activity relationships of nonnatural beta‐C‐nucleoside 5′‐triphosphates bearing an aromatic nucleobase with phenolic hydroxy groups: Inhibitory activities against DNA polymerases. J. Med. Chem. 45:5594‐5603.
   Atwell, S., Meggers, E., Spraggon, G., and Schultz, P.G. 2001. Structure of a copper‐mediated base pair in DNA. J. Am. Chem. Soc. 123:12364‐12367.
   Berdis, A.J. and McCutcheon, D. 2007. The use of non‐natural nucleotides to probe template‐independent DNA synthesis. Chembiochem 8:1399‐1408.
   Berger, M., Ogawa, A.K., McMinn, D.L., Wu, Y., Schultz, P.G., and Romesberg, F.E. 2000a. Stable and selective hybridization of oligonucleotides with unnatural hydrophobic bases. Angew. Chem. Int. Ed. Engl. 39:2940‐2942.
   Berger, M., Wu, Y., Ogawa, A.K., McMinn, D.L., Schultz, P.G., and Romesberg, F.E. 2000b. Universal bases for hybridization, replication and chain termination. Nucleic Acids Res. 28:2911‐2914.
   Bergstrom, D.E., Zhang, P., Toma, P.H., Andrews, P.C., and Nichols, R. 1995. Synthesis, structure, and deoxyribonucleic acid sequencing with a universal nucleoside: 1‐(2′‐Deoxy‐b‐D‐ribofuranosyl)‐3‐nitropyrrole. J. Am. Chem. Soc. 117:1201‐1209.
   Bergstrom, D.E., Zhang, P., and Johnson, W.T. 1996. Design and synthesis of heterocyclic carboxamides as natural nucleic acid mimics. Nucleosides and Nucleotides 15:59‐68.
   Bergstrom, D.E., Zhang, P., and Johnson, W.T. 1997. Comparison of the base pairing properties of a series of nitroazole nucleobase analogs in the oligodeoxyribonucleotide sequence 5′‐d(CGCXAATTYGCG)‐3′. Nucleic Acids Res. 25:1935‐1942.
   Bijapur, J., Keppler, M.D., Bergqvist, S., Brown, T., and Fox, K.R. 1999. 5‐(1‐propargylamino)‐2′‐deoxyuridine (Up): A novel thymidine analogue for generating DNA triplexes with increased stability. Nucleic Acids Res. 27:1802‐1809.
   Brotschi, C., Haberli, A., and Leumann, C.J. 2001. A stable DNA duplex containing a non‐hydrogen‐bonding and non‐shape‐complementary base couple: Interstrand stacking as the stability determining factor. Angew. Chem. Int. Ed. 40:3012‐3014.
   Brotschi, C., Mathis, G., and Leumann, C.J. 2005. Bipyridyl‐ and biphenyl‐DNA: A recognition motif based on interstrand aromatic stacking. Chemistry 11:1911‐1923.
   Brown, D.M. and Lin, P.K.T. 1991. Synthesis and duplex stability of oligonucleotides containing adenine‐guanine analogues. Carbohydr. Res. 216:129‐139.
   Buchini, S. and Leumann, C.J. 2006. 2′‐O‐aminoethyl oligoribonucleotides containing novel base analogues: Synthesis and triple‐helix formation at pyrimidine/purine inversion sites. Eur. J. Org. Chem. 3152‐3168.
   Cao, H., Tanaka, K., and Shionoya, M. 2000. An alternative base‐pairing of catechol‐bearing nucleosides by borate formation. Chem. Pharm. Bull. 48:1745‐1748.
   Carbonnaux, C., Fazakerlly, G.V., and Sowers, L.C. 1990. An NMR structural study of deaminated base pairs in DNA. Nucleic Acids Res. 18:4075‐4081.
   Cassidy, S.A., Slickers, P., Trent, J.O., Capaldi, D.C., Roselt, P.D., Reese, C.B., Neidle, S. and Fox, K.R. 1997. Recognition of GC base pairs by triplex forming oligonucleotides containing nucleosides derived from 2‐aminopyridine. Nucleic Acids Res. 25:4891‐4898.
   Chatake, T., Hikima, T., Ono, A., Ueno, Y., Matsuda, A., and Takenaka, A. 1999a. Crystallographic studies on damaged DNAs. II. N‐6‐methoxyadenine can present two alternate faces for Watson‐Crick base‐pairing, leading to pyrimidine transition mutagenesis. J. Mol. Biol. 294:1223‐1230.
   Chatake, T., Ono, A., Ueno, Y., Matsuda, A., and Takenaka, A. 1999b. Crystallographic studies on damaged DNAs. I. An N‐6‐methoxyadenine residue forms a Watson‐Crick pair with a cytosine residue in a B‐DNA duplex. J. Mol. Biol. 294:1215‐1222.
   Clever, G.H., Kaul, C., and Carell, T. 2007. DNA‐metal base pairs. Angew. Chem. Int. Ed. 46:6226‐6236.
   Coleman, R.S., McCary, J.L., and Perez, R.J. 1999. Thionucleoside disulfides as covalent constraints of DNA conformation. Tetrahedron 55:12009‐12022.
   Corfield, P.W.R., Hunter, W.N., Brown, T., Robinson, P., and Kennard, O. 1987. Inosine‐adenine base pairs in a B‐DNA duplex. Nucleic Acids Res. 15:7935‐7949.
   Crotty, S., Maag, D., Arnold, J.J., Zhong, W., Lau, J.Y., Hong, Z., Andino, R., and Cameron, C.E. 2000. The broad‐spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen. Nat. Med. 6:1375‐1379.
   Cruse, W.B.T., Aymani, J., Kennard, O., Brown, T., Jack, A.G., and Leonard, G.A. 1989. Refined crystal structures of an octanucleotide duplex with I.T. mismatch base pairs. Nucleic Acids Res. 17:55‐72.
   Day, J.P., Bergstrom, D., Hammer, R.P., and Barany, F. 1999a. Nucleotide analogs facilitate base conversion with 3′‐mismatch primers. Nucleic Acids Res. 27:1810‐1818.
   Day, J.P., Hammer, R.P., Bergstrom, D., and Barany, F. 1999b. Nucleotide analogs and new buffers improve a generalized method to enrich for low abundance mutations. Nucleic Acids Res. 27:1819‐1827.
   Dervan, P.B. and Burli, R.W. 1999. Sequence‐specific DNA recognition by polyamides. Cur. Opin. Chem. Biol. 3:688‐693.
   Doi, Y., Chiba, J., Morikawa, T., and Inoyue, M. 2008. Artificial DNA made exclusively of nonnatural C‐nucleosides with four types of nonnatural bases. J. Am. Chem. Soc. 130:8762‐8768.
   Doronina, S.O. and Behr, J.‐P. 1997. Towards a general triple helix mediated DNA recognition scheme. Chem. Soc. Rev. 26:63‐71.
   Eritja, R., Horowitz, D.M., Walker, P.A., Ziehler‐Martin, J.P., Boosalis, M.S., Goodman, M.F., Itakura, K., and Kaplan, B.E. 1986. Synthesis and properties of oligonucleotides containing 2′‐Deoxynebularine and 2‐Deoxyxanthosine. Nucleic Acids Res. 14:8135‐8153.
   Ganesh, K.N., Kumar, V.A, and Barawkar, D.A. 1996. Synthetic control of DNA triplex structure through chemical modifications. In Supramolecular Control of Structure and Bonding. (A.D. Hamilton, ed.) pp. 263‐327. John Wiley and Sons, New York.
   Gao, J.M., Liu, H.B., and Kool, E.T. 2004. Expanded‐size bases in naturally sized DNA: Evaluation of steric effects in Watson‐Crick pairing. J. Am. Chem. Soc. 126:11826‐11831.
   Gao, J.M., Liu, H.B., and Kool, E.T. 2005. Assembly of the complete eight‐base artificial genetic helix, xDNA, and its interaction with the natural genetic system. Angew. Chem. Int. Ed. 44:3118‐3122.
   Gong, J.C. and Sturla, S.J. 2007. A synthetic nucleoside probe that discerns a DNA adduct from unmodified DNA. J. Am. Chem. Soc. 129:4882‐4883.
   Gottesfeld, J.M., Turner, J.M., and Dervan, P.B. 2000. Chemical approaches to control gene expression. Gene Exp. 9:77‐91.
   Gowers, D.M. and Fox, K.R. 1999. Towards mixed sequence recognition by triple helix formation. Nucleic Acids Res. 27:1569‐1577.
   Guckian, K.M. and Kool, E.T. 1997. Highly precise shape mimicry by a difluorotoluene deoxynucleoside, a replication‐competent substitute for thymidine. Angew. Chem. Int. Ed. 36:2825‐2828.
   Guckian, K.M., Morales, J.C., and Kool, E.T. 1998. Structure and base pairing properties of a replicable nonpolar isostere for deoxyadenosine. J. Org. Chem. 63:9652‐9656.
   Guo, Z., Liu, Q., and Smith, L.M. 1997. Enhanced discrimination of single nucleotide polymorphisms by artificial mismatch hybridization. Nat. Biotechnol. 15:331‐335.
   Habener, J.F., Vo, C.D., Le, D.B., Gryan, G.P., Ercolani, L., and Want, A.H. 1988. 5‐Fluorodeoxyuridine as an alternative to the synthesis of mixed hybridization probes for the detection of specific gene‐sequences. Proc. Nat. Acad. Sci. U.S.A. 85:1735‐1739.
   Hatano, A., Makita, S., and Kirihara, M. 2005. Synthesis and redox‐active base‐pairing properties of DNA incorporating mercapto C‐nucleosides. Tetrahedron 61:1723‐1730.
   He, J.L. and Seela, F. 2002. Base pairing of 8‐aza‐7‐deazapurine‐2,6‐diamine linked via the N(8)‐position to the DNA backbone: Universal base‐pairing properties and formation of highly stable duplexes when alternating with dT. Helvetica Chimica Acta 85:1340‐1354.
   He, J.L. and Seela, F. 2003. Oligonucleotides incorporating 8‐aza‐7‐deazapurines: synthesis and base pairing of nucleosides with nitrogen‐8 as a glycosylation position. Org. Biomol. Chem. 1:1873‐1883.
   Henry, A.A., Olsen, A.G., Matsuda, S., Yu, C., Geierstanger, B.H., and Romesberg, F.E. 2004. Efforts to expand the genetic alphabet: Identification of a replicable unnatural DNA self‐pair. J. Am. Chem. Soc. 126:6923‐6931.
   Heuberger, B.D., Shin, D., and Switzer, C. 2008. Two Watson‐Crick‐like metallo base‐pairs. Organic Letters 10:1091‐1094.
   Hikishima, S., Minakawa, N., Kuramoto, K., Fujisawa, Y., Ogawa, M., and Matsuda, A. 2005. Synthesis of 1,8‐naphthyridine C‐nucleosides and their base‐pairing properties in oligodeoxynucleotides: Thermally stable Naphthyridine: Imidazopyridopyrimidine base‐pairing motifs. Angew. Chem. Int. Ed. 44:596‐598.
   Hikishima, S., Minakawa, N., Kuramoto, K., Fujisawa, Y., Ogawa, M., and Matsuda, A. 2006. Synthesis and characterization of oligodeoxynucleotides containing naphthyridine: Imidazopyridopyrimidine base pairs at their sticky ends. Application as thermally stabilized decoy molecules. Chembiochem. 7:1970‐1975.
   Hill, F., Loakes, D., Brown, D.M. 1998. Polymerase recognition of synthetic oligodeoxyribonucleotides incorporating degenerate pyrimidine and purine bases. Proc. Natl. Acad. Sci. U.S.A. 95:4258‐4263.
   Hirao, I. 2006. Unnatural base pair systems for DNA/RNA‐based biotechnology. Curr. Opin. Chem. Biol. 10:622‐627.
   Hirao, I., Ohtsuki, T., Fujiwara, T., Mitsui, T., Yokogawa, T., Okuni, T., Nakayama, H., Takio, K., Yabuki, T., Kigawa, T., Kodama, K., Yokogawa, T., Nishikawa, K., and Yokoyama, S. 2002. An unnatural base pair for incorporating amino acid analogs into proteins. Nature Biotechnology 20:77‐182.
   Hirao, I., Harada, Y., Kimoto, M., Mitsui, T., Fujiwara, T., and Yokoyama, S. 2004. A two‐unnatural‐base‐pair system toward the expansion of the genetic code. J. Am. Chem. Soc. 126:13298‐13305.
   Hirao, I., Kimoto, M., Mitsui, T., Fujiwara, T., Kawai, R., Sato, A., Harada, Y., and Yokoyama, S. 2006. An unnatural hydrophobic base pair system: Site‐specific incorporation of nucleotide analogs into DNA and RNA. Nat. Methods 3:729‐735.
   Hirao, I., Mitsui, T., Kimoto, M., and Yokoyama, S. 2007. An efficient unnatural base pair for PCR amplification. J. Am. Chem. Soc. 129:15549‐15555.
   Hoops, G.C., Zhang, P., Johnson, W.T., Paul, N., Bergstrom, D.E., and Davisson, V.J. 1997. Template directed incorporation of nucleotide mixtures using azole‐nucleobase analogs. Nucleic Acids Res. 25:4866‐4871.
   Horlacher, J., Hottiger, M., Podust, V.N., Hubscher, U., and Benner, S.A. 1995. Recognition by viral and cellular DNA polymerases of nucleosides bearing bases with nonstandard hydrogen bonding patterns. Proc. Nat. Acad. Sci. U.S.A. 92:6329‐6333.
   Huang, C.Y., Bi, G.X., and Miller, P.S. 1996. Triplex formation by oligonucleotides containing novel deoxycytidine derivatives. Nucleic Acids Res. 24:2606‐2613.
   Hunziker, J. and Mathis, G. 2005. DNA with artificial base pairs. Chimia 59:780‐784.
   Hutter, D. and Benner, S.A. 2003. Expanding the genetic alphabet: Non‐epimerizing nucleoside with the pyDDA hydrogen‐bonding pattern. J. Org. Chem. 68:9839‐9842.
   Hwang, G.T. and Romesberg, F.E. 2006. Substituent effects on the pairing and polymerase recognition of simple unnatural base pairs. Nucleic Acids Res. 34:2037‐2045.
   Hwang, G.T., Leconte, A.M., and Romesberg, F.E. 2007. Polymerase recognition and stability of fluoro‐substituted pyridone nucleobase analogues. Chembiochem. 8:1606‐1611.
   Inoue, H., Imura, A., and Ohtsuka, E. 1985. Synthesis and hybridization of dodecadeoxyribonucleotides containing a fluorescent pyridopyrimidine deoxynucleoside. Nucleic Acids Res. 13:7119‐7128.
   Johnson, W.T., Zhang, P., and Bergstrom, D.E. 1997. The synthesis and stability of oligodeoxyribonucleotides containing the deoxyadenosine mimic 1‐(2′‐deoxy‐β‐D‐ribofuranosyl)imidazole‐4‐carboxamide. Nucleic Acids Res. 25:559‐567.
   Kawase, Y., Iwai, S., and Ohtsuka, E. 1989. Synthesis and thermal stability of dodecadeoxyribonucleotides containing deoxyinosine pairing with four major bases. Chem. Pharmacolog. Bull. 37:599‐601.
   Kim, T.W. and Kool, E.T. 2005. A series of nonpolar thymidine analogues of increasing size: DNA base pairing and stacking properties. J. Org. Chem. 70:2048‐2053.
   Kim, Y., Leconte, A.M., Hari, Y., and Romesberg, F.E. 2006. Stability and polymerase recognition of pyridine nucleobase analogues: Role of minor‐groove H‐bond acceptors. Angew. Chem. Int. Ed. 45:7809‐7812.
   Klewer, D.A., Zhang, P.M., Bergstrom, D.E., Davisson, V.J., and LiWant, A.C. 2001. Conformations of nucleoside analogue 1‐(2′‐deoxy‐beta‐D‐ribofuranosyl)‐1,2,4‐triazole‐3‐carboxamide in different DNA sequence contexts. Biochemistry 40:1518‐1527.
   Koh, J.S. and Dervan, P.B. 1992. Design of a nonnatural deoxyribonucleoside for recognition of GC base‐pairs by oligonucleotide‐directed triple helix formation. J. Am. Chem. Soc. 114:1470‐1478.
   Kool, E.T. 1998. Replication of non‐hydrogen bonded bases by DNA polymerases: A mechanism for steric matching. Biopolymers 48:3‐17.
   Kool, E.T. 2002. Replacing the nucleobases in DNA with designer molecules. Acc. Chem. Res. 35:936‐943.
   Kool, E.T. 2008. Modified DNA bases: Probing base‐pair recognition by polymerases. In Modified Nucleosides in Biochemistry, Biotechnology and Medicine. (P. Herdewijn, ed.) pp. 49‐74. Weinheim, Wiley‐VCH Verlag GmbH & Co. KGaA
   Kool, E.T. and Sintim, H.O. 2006. The difluorotoluene debate—a decade later. Chem. Commun. 35:3665‐3675.
   Krawczyk, S.H., Milligan, J.F., Wadwani, S., Moulds, C., Froehler, B.C., and Matteucci, M.D. 1992. Oligonucleotide‐mediated triple helix formation using an N3‐protonated deoxycytidine analog exhibiting pH‐independent binding within the physiological range. Proc. Nat. Acad. Sci. U.S.A. 89:3761‐3764.
   Krueger, A.T. and Kool, E.T. 2007. Model systems for understanding DNA base pairing. Curr. Opin. Chem. Biol. 11:588‐594.
   Krueger, A.T. and Kool, E.T. 2008. Fluorescence of size‐expanded DNA bases: Reporting on DNA sequence and structure with an unnatural genetic set. J. Am. Chem. Soc. 130:3989‐3999.
   Krueger, A.T., Lu, H.G., Lee, A.H.F., and Kool, E.T. 2007. Synthesis and properties of size‐expanded DNAs: Toward designed, functional genetic systems. Acc. Chem. Res. 40:141‐150.
   Kutyavin, I.V., Rhinehart, R.L., Lukhtanov, E.A., Gorn, V.V., Meyer, Jr., R.B., and Gamper, Jr., H.B. 1996. Oligonucleotides containing 2‐aminoadenine and 2‐thiothymine act as selectively binding complementary agents. Biochemistry 35:11170‐11176.
   Lai, J.S. and Kool, E.T. 2004. Selective pairing of polyfluorinated DNA bases. J. Am. Chem. Soc. 126:3040‐3041.
   Lai, J.S. and Kool, E.T. 2005. Fluorous base‐pairing effects in a DNA polymerase active site. Chemistry 11:2966‐2971.
   Leconte, A.M., Hwang, G.T., Matsuda, S., Capek, P., Hari, Y., and Romesberg, F.E. 2008. Discovery, characterization, and optimization of an unnatural base pair for expansion of the genetic alphabet. J. Am. Chem. Soc. 130:2336‐2343.
   Lee, A.H.F. and Kool, E.T. 2005a. A new four‐base genetic helix, yDNA, composed of widened benzopyrimidine‐purine pairs. J. Am. Chem. Soc. 127:3332‐3338.
   Lee, A.H.F. and Kool, E.T. 2005b. Novel benzopyrimidines as widened analogues of DNA bases. J. Org. Chem. 70:132‐140.
   Li, J.S., Fan, Y.H., Zhang, Y., Marky, L.A., and Gold, B. 2003. Design of triple helix forming C‐glycoside molecules. J. A. Chem. Soc. 125:2084‐2093.
   Li, J.S., Chen, F.X., Shikiya, R., Marky, L.A., and Gold, B. 2005. Molecular recognition via triplex formation of mixed purine/pyrimidine DNA sequences using oligoTRIPs. J. Am. Chem. Soc. 127:12657‐12665.
   Lin, T.K.T. and Brown, D.M. 1989. Synthesis and duplex stability of oligonucleotides containing cytosine‐thymine analogues. Nucleic Acids Res. 17:10373‐10383.
   Liu, H.B., Gao, J.M., and Kool, E.T. 2005a. Helix‐forming properties of size‐expanded DNA, an alternative four‐base genetic form. J. Am. Chem. Soc. 127:1396‐1402.
   Liu, H.B., Gao, J.M., and Kool, E.T. 2005b. Size‐expanded analogues of dG and dC: Synthesis and pairing properties in DNA. J. Org. Chem. 70:639‐647.
   Loakes, D. and Brown, D.M. 1994. 5‐Nitroindole as a universal base analogue. Nucleic Acids Res. 22:4039‐4043.
   Loakes, D., Brown, D.M., Linde, S., and Hill, F. 1995. 3‐Nitropyrrole and 5‐Nitroindole as universal bases in primers for DNA sequencing and PCR. Nucleic Acids Res. 23:2361‐2366.
   Lu, H.G., He, K.Z., and Kool, E.T. 2004. yDNA: A new geometry for size‐expanded base pairs. Angew. Chem. Int. Ed. 43:5834‐5836.
   Luo, J., Bergstrom, D.E., and Barany, F. 1996. Improving the fidelity of Thermus thermophilus DNA ligase. Nucleic Acids Res. 24:3071‐3078.
   Luyten, I. and Herdewijn, P. 1998. Hybridization properties of base‐modified oligonucleotides within the double and triple helix motif. Eur. J. Med. Chem. 33:515‐576.
   Lynch, S.R., Liu, H.B., Gao, J., and Kool, E.T. 2006. Toward a designed, functioning genetic system with expanded‐size base pairs: Solution structure of the eight‐base xDNA double helix. J. Am. Chem. Soc. 128:14704‐14711.
   Martin, F.H. and Castro, M.M. 1985. Base pairing involving deoxyinosine: Implications for probe design. Nucleic Acids Res. 13:8927‐8938.
   Matray, T.J. and Kool, E.T. 1999. A specific partner for abasic damage in DNA. Nature 399:704‐708.
   Matray, T., Gamsey, S., Pongracz, K., and Gryaznov, S. 2000. A remarkable stabilization of complexes formed by 2,6‐diaminopurine oligonucleotide N3′→P5′ phosphoramidates. Nucleosides Nucleotides Nucleic Acids 19:1553‐1567.
   Matsuda, S. and Romesberg, F.E. 2004. Optimization of interstrand hydrophobic packing interactions within unnatural DNA base pairs. J. Am. Chem. Soc. 126:14419‐14427.
   Matsuda, S., Henry, A.A., and Romesberg, F.E. 2006. Optimization of unnatural base pair packing for polymerase recognition. J. Am. Chem. Soc. 128:6369‐6375.
   Matsuda, S., Fillo, J.D., Henry, A.A., Rai, P., Wilkens, S.J., Dwyer, T.J., Geierstanger, B.H., Wemmer, D.E., Schultz, P.G., Spraggon, G., and Romesberg, F.E. 2007. Efforts toward expansion of the genetic alphabet: Structure and replication of unnatural base pairs. J. Am. Chem. Soc. 129:10466‐10473.
   McMinn, D.L., Ogawa, A.K., Wu, Y., Lui, J., Schultz, P.G., and Romesberg, F.E. 1999. Efforts towards expansion of the genetic alphabet: DNA polymerase recognition of a highly stable, self‐pairing hydrophobic base. J. Am. Chem. Soc. 121:11585‐11586.
   Meggers, E., Holland, P.L., Tolman, W.B., Romesberg, F.E., and Schultz, P.G. 2000. A novel copper‐mediated DNA base pair. J. Am. Chem. Soc. 122:10714‐10715.
   Mertz, E., Mattei, S., and Zimmerman, S.C. 2000. Synthetic receptors for CG base pairs. Org. Lett. 2:2931‐2934.
   Mertz, E., Mattei, S., and Zimmerman, S.C. 2004. Synthesis and duplex DNA recognition studies of oligonucleotides containing a ureido isoindolin‐1‐one homo‐N‐nucleoside. A comparison of host and DNA recognition studies. Bioog. Med. Chem. 12:1517‐1526.
   Millican, T.A., Mock, G.A., Chauncey, M.A., Patel, T.P., Eaton, M.A., Gunning, J., Cutbush, S.D., Neidle, S., and Mann, J. 1984. Synthesis and biophysical studies of short oligodeoxynucleotides with novel modifications: A possible approach to the problem of mixed base oligodeoxynucleotide synthesis. Nucleic Acids Res. 12:7435‐7453.
   Minakawa, N., Kojima, N., Hikishima, S., Sasaki, T., Kiyosue, A., Atsumi, N., Ueno, Y., and Matsuda, A. 2003. New base pairing motifs. The synthesis and thermal stability of oligodeoxynucleotides containing imidazopyridopyrimidine nucleosides with the ability to form four hydrogen bonds. J. Am. Chem. Soc. 125:9970‐9982.
   Mitsui, T., Kitamura, A., Kimoto, M., To, T., Sato, A., Hirao, I., and Yokoyama, S. 2003. An unnatural hydrophobic base pair with shape complementarity between pyrrole‐2‐carbaldehyde and 9‐methylimidazo[(4,5)‐b]pyridine. J. Am. Chem. Soc. 125:5298‐5307.
   Mitsui, T., Kimoto, M., Harada, Y., Yokoyama, S., and Hirao, I. 2005. An efficient unnatural base pair for a base‐pair‐expanded transcription system. J. Am. Chem. Soc. 127:8652‐8658.
   Miyake, Y., Togashi, H., Tashiro, M., Yamaguchi, H., Oda, S., Kudo, M., Tanaka, Y., Kondo, Y., Sawa, R., Fujimoto, T., Machinami, T., and Ono, A. 2006. Mercury(II)‐mediated formation of thymine‐Hg‐II‐thymine base pairs in DNA duplexes. J. Am. Chem. Soc. 128:2172‐2173.
   Mizuta, M., Banba, J.I., Kanamori, T., Tawarada, R., Ohkubo, A., Sekine, M., and Seio, K. 2008. New nucleotide pairs for stable DNA triplexes stabilized by stacking interaction. J. Am. Chem. Soc. 130:9622‐9623.
   Morales, J.C. and Kool, E.T. 1999. Minor groove interactions between polymerase and DNA: More essential to replication than Watson‐Crick hydrogen bonds? J. Am. Chem. Soc. 121:2323‐2324.
   Moran, S., Ren, R.X.‐F., and Kool, E.T. 1997a. A thymidine triphosphate shape analog lacking Watson‐Crick pairing ability is replicated with high sequence selectivity. Proc. Nat. Acad. Sci. U.S.A. 94:10506‐10511.
   Moran, S., Ren, R.X.‐F., Rummey, IV, S., and Kool, E.T. 1997b. Difluorotoluene, a nonpolar isostere for thymine, codes specifically and efficiently for adenine in DNA replication. J. Am. Chem. Soc. 119:2056‐2057.
   Muller, J. 2008. Metal‐ion‐mediated base pairs in nucleic acids. Eur. J. Inorg. Chem. 2008:3749‐3763.
   Nakatani, K., Sando, S., and Saito, I. 2001. Scanning of guanine‐guanine mismatches in DNA by synthetic ligands using surface plasmon resonance. Nat. Biotechnol. 19:51‐55.
   Negishi, K., Williams, D.M., Inoue, Y., Moriyama, K., Brown, D.M., and Hayatsu, H. 1997. The mechanism of mutation induction by a hydrogen bond ambivalent, bicyclic N‐4‐oxy‐2′‐deoxycytidine in Escherichia coli. Nucleic Acids Res. 25:1548‐1552.
   Nguyen, N.K., Bonfils, E., Auffray, P., Costaglioli, P., Schmitt, P., Asseline, U., Durand, M., Maurizot, J.‐C., Dupret, D., and Thuong, N.T. 1998. The stability of duplexes involving AT and/or G(4Et)C base pairs is not dependent on their AT/G(4Et)C ratio content. Implication for DNA sequencing by hybridization. Nucleic Acids Res. 26:4249‐4258.
   Nishio, H., Ono, A., Matsuda, A., and Ueda, T. 1992a. The synthesis and properties of oligodeoxyribonucleotides containing N6‐methoxyadenine. Nucleic Acids Res. 20:777‐782.
   Nishio, H., Ono, A., Matsuda, A., and Ueda, T. 1992b. Nucleosides and nucleotides.3. Thermal‐stability of oligodeoxyribonucleotide duplexes containing N6‐hydroxyadenine in substitution for adenine. Chemical & Pharmaceutical Bulletin 40:1355‐1357.
   Obika, S., Inohara, H., Hari, Y., and Imanishi, T. 2008. Recognition of T⋅A interruption by 2′,4′‐BNAs bearing heteroaromatic nucleobases through parallel motif triplex formation. Bioorg. & Med. Chem. 16:2945‐2954.
   Oda, Y., Uesugi, S., Ikehara, M., Kawase, Y., and Ohtsuka, E. 1991. NMR studies for identification of dI:dG mismatch base‐pairing structure in DNA. Nucleic Acids Res. 19:5263‐5267.
   Ogawa, A.K., Wu, Y., McMinn, D.L., Liu, J., Schultz, P.G., and Romesberg, F.E. 2000. Efforts toward the expansion of the genetic alphabet: Information storage and replication with unnatural hydrophobic base pairs. J. Am. Chem. Soc. 122:3274‐3287.
   Ohtsuka, E., Matsuki, S., Ikehara, M., Takahashi, Y., and Matsubara, K. 1985. An alternative approach to deoxyoligonucleotides as hybridization probes by insertion of deoxyinosine at ambiguous codon positions. J. Biol. Chem. 260:2605‐2608.
   Ohtsuki, T., Kimoto, M., Ishikawa, M., Mitsui, T., Hirao, I., and Yokiyama, S. 2001. Unnatural base pairs for specific transcription. Proc. Nat. Acad. Sci. U.S.A. 98:4922‐4925.
   Ono, A., Tso, P.O.P., Kanb, L.S. 1992. Triplex formation of an oligonucleotide containing 2′‐O‐methylpseudoisocytidine with a DNA duplex at neutral Ph. J. Org. Chem. 57:3225‐3230.
   Paul, N., Nashine, V.C., Hoops, G., Zhang, P., Zhou, J., Bergstrom, D.E., and Davisson, V.J. 2003. DNA polymerase template interactions probed by degenerate isosteric nucleobase analogs. Chem. Biol. 10:815‐825.
   Piccirilli, J.A., Krauch, T., Moroney, S.E., and Benner, S.A. 1990. Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic alphabet. Nature 343:33‐37.
   Pochet, S. and Marliére, P. 1996. Construction of a self‐complementary nucleoside from deoxyguanosine. C.R. Acad. Sci. III 319:1‐7.
   Polonius, F.A. and Muller, J. 2007. An artificial base pair, mediated by hydrogen bonding and metal‐ion binding. Angew. Chem. Int. Ed. 46:5602‐5604.
   Prevot, I. and Leumann, C.J. 2002. Evaluation of novel third‐strand bases for the recognition of a C⋅G base pair in the parallel DNA triple‐helical binding motif. Helvetica Chimica Acta 85:502‐515.
   Prevot‐Halter, I. and Leumann, C.J. 1999. Selective recognition of a C‐G base‐pair in the parallel DNA triple‐helical binding motif. Bioorg. Med. Chem. Lett. 9:2657‐2660.
   Purwanto, M.G.M. and Weisz, K. 2003. Non‐natural nucleosides for the specific recognition of Watson‐Crick base pairs. Curr. Org. Chem. 7:427‐446.
   Purwanto, M.G.M. and Weisz, K. 2004. Binding of imidazole‐derived nucleosides to a CG base pair. J. Org. Chem. 69:195‐197.
   Purwanto, M.G.M. and Weisz, K. 2006. Synthesis and DNA triplex formation of an oligonucleotide containing an urocanamide. Tetrahedron Letters 47:3849‐3852.
   Robles, J., Grandas, A., Pedroso, E., Luque, F.J., Eritja, R., and Orozco, M. 2002. Nucleic acid triple helices: Stability effects of nucleobase modifications. Curr. Org. Chem. 6:1333‐1368.
   Rothman, J.H. and Richards, W.G. 1996. Novel hoogsteen‐like bases for configurational recognition of the T‐A base pair by DNA triplex formation. Biopolymers 39:795‐812.
   Rozners, E. 2005. Modification of nucleoside heterocycles to probe and expand nucleic acid structure and function. Lett. Org. Chem. 2:496‐500.
   Rusling, D.A., Broughton‐Head, V.J., Tuck, A., Khairallah, H., Osborne, S.D., Brown, T., and Fox, K.R. 2008. Kinetic studies on the formation of DNA triplexes containing the nucleoside analogue 2′‐O‐(2‐aminoethyl)‐5‐(3‐amino‐1‐propynyl)uridine. Org. Biomol. Chem. 6:122‐129.
   Rusling, D.A., Le Strat, L., Powers, V.E., Broughton‐Head, V.J., Booth, J., Lack, O., Brown, T., and Fox, K.R. 2005a. Combining nucleoside analogues to achieve recognition of oligopurine tracts by triplex‐forming oligonucleotides at physiological pH. Febs Letters 579:6616‐6620.
   Rusling, D.A., Powers, V.E.C., Ranasinghe, R.T., Want, Y., Osborne, S.D., Brown, T., and Fox, K.R. 2005b. Four base recognition by triplex‐forming oligonucleotides at physiological pH. Nucleic Acids Res. 33:3025‐3032.
   Saenger, W. 1984. Principles of Nucleic Acid Structure. New York, Springer‐Verlag.
   Sasaki, S., Taniguchi, Y., Takahashi, R., Senko, Y., Kodama, K., Nagatsugi, F., and Maeda, M. 2004. Selective formation of stable triplexes including a TA or a CG interrupting site with new bicyclic nucleoside analogues (WNA). J. Am. Chem. Soc. 126:516‐528.
   Schweitzer, B.A. and Kool, E. 1995. Hydrophobic, non‐hydrogen‐bonding bases and base pairs DNA. J. Am. Chem. Soc. 117:1864‐1872.
   Scopes, D.I.C., Barrio, J.R., and Leonard, N.J. 1977. Defined dimensional changes in enzyme cofactors: Fluorescent stretched‐out analogs of adenine‐nucleotides. Science 195:296‐298.
   Seela, F. and Debelak, H. 2000. The N8‐(2′‐deoxyribofuranosie) of 8‐aza‐7deazaadenine: A universal nucleoside forming specific hydrogen bonds with the four canonical DNA constituents. Nucleic Acids Res. 28:3224‐3232.
   Seela, F. and Jawalekar, A. 2002. 4‐Nitroindazole: Its ambiguous nature in oligonucleotide base pairing and the influence of the glycosylation position on the duplex stability. Helvetica Chimica Acta 85:1857‐1868.
   Seela, F. and Kaiser, K. 1986. Phosphoramidites of base‐modified 2′‐deoxyinosine isosteres and solid‐phase synthesis of d(GCI*CGC) oligomers containing an ambiguous base. Nucleic Acids Res. 14:1825‐1844.
   Sekine, M., Ohkubo, A., Okamoto, I., and Seio, K. 2008. Synthesis and properties of oligonucleotides incorporating modified nucleobases capable Watson‐Crick type base‐pair formation. In Modified Nucleosides in Biochemistry, Biotechnology and Medicine. (P. Herdewijn, ed.) pp. 153‐172. Weinheim, Wiley‐VCH Verlag GmbH & Co. KGaA.
   Shionoya, M. and Tanaka, K. 2000. Synthetic incorporation of metal complexes into nucleic acids and peptides directed toward functionalized molecules. Bull. Chem. Soc. Jpn. 73:1945‐1954.
   Shionoya, M. and Tanaka, K. 2004. Artificial metallo‐DNA: A bio‐inspired approach to metal array programming. Curr. Opin. Chem. Biol. 8:592‐597.
   Switzer, C., Sinha, S., Kim, P.H., and Heuberger, B.D. 2005. A purine‐like nickel(II) base pair for DNA. Angew. Chem. Int. Ed. 44:1529‐1532.
   Switzer, C.Y., Moroney, S.E., and Benner, S.A. 1993. Enzymatic recognition of the base pair between isocytidine and isoguanosine. Biochemistry 32:10489‐10496.
   Takezawa, Y., Tanaka, K., Yori, M., Tashiro, S., Shiro, M., and Shionoya, M. 2008. Soft metal‐mediated base pairing with novel synthetic nucleosides possessing an O,S‐donor ligand. J. Org. Chem. 73:6092‐6098.
   Tanaka, K. and Shionoya, M. 1999. Synthesis of a novel nucleoside for alternative DNA base pairing through metal complexation. J. Org. Chem. 64:5002‐5003.
   Tanaka, K., Tengeiji, A., Kato, T., Toyama, N., Shiro, M., and Shionoya, M. 2002a. Efficient incorporation of a copper hydroxypyridone base pair in DNA. J. Am. Chem. Soc. 124:12494‐12498.
   Tanaka, K., Yamada, Y., and Shionoya, M. 2002b. Formation of silver(I)‐mediated DNA duplex and triplex through an alternative base pair of pyridine nucleobases. J. Am. Chem. Soc. 124:8802‐8803.
   Taniguchi, Y. and Kool, E.T. 2007. Nonpolar isosteres of damaged DNA bases: Effective mimicry of mutagenic properties of 8‐oxopurines. J. Am. Chem. Soc. 129:8836‐8844.
   Taniguchi, Y., Nakamura, A., Senko, Y., Nagatsugi, F., and Sasaki, S. 2006. Effects of halogenated WNA derivatives on sequence dependency for expansion of recognition sequences in non‐natural‐type triplexes. J. Org. Chem. 71:2115‐2122.
   Too, K. and Loakes, D. 2008. Universal base analogues and their applications to biotechnology. In Modified Nucleosides in Biochemistry, Biotechnology and Medicine. (P. Herdewijn, ed.) Weinheim, Wiley‐VCH Verlag GmbH & Co. KGaA.
   Too, K., Brown, D.M., Holliger, P., and Loakes, D. 2006. Effect of a hydrogen bonding carboxamide group on universal bases. Collection of Czechoslovak Chemical Communications 71:899‐911.
   Ueno, Y., Mikawa, M., and Matsuda, A. 1998. Nucleosides and nucleotides. 170. Synthesis and properties of oligodeoxynucleotides containing 5‐[N‐[2‐[N,N‐bis(2‐aminoethyl)amino]ethyl]carbamoyl]‐2′‐deoxyuridine and 5‐[N‐[3‐[N,N‐bis(3‐aminopropyl)amino]propyl]carbamoyl]‐2′‐deoxyuridine. Bioconjug. Chem. 9:33‐39.
   Uesugi, S., Oda, Y., Ikehara, M., Kawase, Y., and Ohtsuka, E. 1987. Identification of I‐A mismatch base‐pairing structure in DNA. J. Biol. Chem. 262:6965‐6968.
   Ujjinamatada, R.K., Paulman, R.L., Ptak, R.G., and Hosmane, R.S. 2006. Nucleosides with self‐complementary hydrogen‐bonding motifs: Synthesis and base‐pairing studies of two nucleosides containing the imidazo[4,5‐d]pyridazine ring system. Bioorg. Med. Chem. 14:6359‐6367.
   Voegel, J.J. and Benner, S.A. 1994. Nonstandard hydrogen bonding in duplex oligonucleotides. The base pair between an acceptor‐donor‐donor pyrimidine analog and a donor‐acceptor‐acceptor analog. J. Am. Chem. Soc. 116:6929‐6930.
   von Krosigk, U. and Benner, S.A. 2004. Expanding the genetic alphabet: Pyrazine nucleosides that support a donor‐donor‐acceptor hydrogen‐bonding pattern. Helvetica Chimica Acta 87:1299‐1324.
   Wagner, R.W., Matteucci, M.D., Lewis, J.G., Gutierrez, A.J., Moulds, C., and Froehler, B.C. 1993. Antisense gene inhibition by oligonucleotides containing C‐5 propyne pyrimidines. Science 260:1510‐1513.
   Wang, W., Purwanto, M.G.M., and Weisz, K. 2004. CG base pair recognition by substituted phenylimidazole nucleosides. Org. Biomol. Chem. 2:1194‐1198.
   Wu, Y.Q., Ogawa, A.K., Berger, M., McMinn, D.L., Schultz, P.G., and Romesberg, F.E. 2000. Efforts toward expansion of the genetic alphabet: Optimization of interbase hydrophobic interactions. J. Am. Chem. Soc. 122:7621‐7632.
   Yang, Z.Y., Hutter, D., Sheng, P., Sismour, A.M., and Benner, S.A. 2006. Artificially expanded genetic information system: A new base pair with an alternative hydrogen bonding pattern. Nucleic Acids Res. 34:6095‐6101.
   Yang, Z.Y., Sismour, A.M., Sheng, P., Puskar, N.L., and Benner, S.A. 2007. Enzymatic incorporation of a third nucleobase pair. Nucleic Acids Res. 35:4238‐4249.
   Yu, H., Eritja, R., Bloom, L.B., and Goodman, M.F. 1993. Ionization of bromouracil and fluorouracil stimulates base mispairing frequencies with guanine. J. Biol. Chem. 268:15935‐15943.
   Zahn, A. and Leumann, C.J. 2006. Synthesis of functionalized biphenyl‐C‐nucleosides and their incorporation into oligodeoxynucleotides. Bioorg. Med. Chem. 14:6174‐6188.
   Zahn, A. and Leumann, C.J. 2008. Recognition properties of donor‐ and acceptor‐modified biphenyl‐DNA. Chemistry 14:1087‐1094.
   Zahn, A., Brotschi, C., and Leumann, C.J. 2005. Pentafluorophenyl‐phenyl interactions in biphenyl‐DNA. Chemistry 11:2125‐2129.
   Zhang, J.M., Cukier, R.I., and Bu, Y. 2007. Rational design of hetero‐ring‐expanded guanine analogs with enhanced properties for modified DNA building blocks. J. Phys. Chem. B 111:8335‐8341.
   Zhang, P., Johnson, W.T., Klewer, D., Paul, N., Hoops, G., Davisson, V.J., and Bergstrom, D.E. 1998. Exploratory studies on azole carboxamides as nucleobase analogs: Thermal denaturation studies on oligodeoxyribonucleotide duplexes containing pyrrole‐3‐carboxamide. Nucleic Acids Res. 26:2208‐2215.
   Zimmermann, N., Meggers, E., and Schultz, P.G. 2002. A novel silver(I)‐mediated DNA base pair. J. Am. Chem. Soc. 124:13684‐13685.
   Zimmermann, N., Meggers, E., and Schultz, P.G. 2004. A second‐generation copper(II)‐mediated metallo‐DNA‐base pair. Bioorg. Chem. 32:13‐25.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library