Synthesis of 2′‐O‐β‐d‐Ribofuranosylnucleosides

Sergey N. Mikhailov1, Ekaterina V. Efimtseva1, Andrei A. Rodionov1, Georgii V. Bobkov1, Irina V. Kulikova1, Piet Herdewijn2

1 Russian Academy of Sciences, Engelhardt Institute of Molecular Biology, Moscow, Russia, 2 Rega Institute for Medical Research, Leuven, Belgium
Publication Name:  Current Protocols in Nucleic Acid Chemistry
Unit Number:  Unit 1.14
DOI:  10.1002/0471142700.nc0114s27
Online Posting Date:  January, 2007
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


A simple and efficient method for the preparation of 2‐O‐β‐D‐ribofuranosylnucleosides, minor tRNA components, is described in this unit. The method consists of condensation of a small excess of 1‐O‐acetyl‐2,3,5‐tri‐O‐benzoyl‐β‐D‐ribofuranose activated with tin tetrachloride with N‐protected 3,5‐O‐tetra‐isopropyldisiloxane‐1,3‐diyl‐ribonucleosides in 1,2‐dichloroethane. Subsequent deprotection produces 2‐O‐β‐D‐ribofuranosylnucleosides in an overall yield of 46% to 72%.

Keywords: disaccharide nucleosides; minor tRNA components; synthesis

PDF or HTML at Wiley Online Library

Table of Contents

  • Basic Protocol 1: Preparation of 2′‐O‐β‐D‐Ribofuranosyladenosine
  • Alternate Protocol 1: Preparation of 2′‐O‐β‐D‐Ribofuranosyluridine
  • Alternate Protocol 2: Preparation of 2′‐O‐β‐D‐Ribofuranosylthymidine
  • Alternate Protocol 3: Preparation of 2′‐O‐β‐D‐Ribofuranosylcytidine
  • Alternate Protocol 4: Preparation of 2′‐O‐β‐D‐Ribofuranosylguanosine
  • Support Protocol 1: Preparation of the 3′,5′‐Protected Ribothymidine
  • Commentary
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


Basic Protocol 1: Preparation of 2′‐O‐β‐D‐Ribofuranosyladenosine

  • 1‐O‐Acetyl‐2,3,5‐tri‐O‐benzoyl‐β‐D‐ribofuranose (S.2)
  • N6‐Benzoyl‐3′,5′‐(1,1,3,3‐O‐tetraisopropyldisiloxane‐1,3‐diyl)adenosine (S.1; unit 2.4; Fig. )
  • Phosphorus pentoxide (P 2O 5)
  • Balloon of nitrogen or argon
  • 1,2‐Dichloroethane, anhydrous
  • Tin tetrachloride (SnCl 4)
  • Methanol (MeOH), analytical grade
  • Methylene chloride (CH 2Cl 2), reagent grade
  • Saturated sodium bicarbonate solution (sat. NaHCO 3)
  • Hyflo Super Cel (Fluka)
  • Sodium sulfate, anhydrous (Na 2SO 4)
  • Silica gel (e.g., Kieselgel 60, 0.06 to 0.20 mm; Merck)
  • Tetrabutylammonium fluoride trihydrate (TBAF)
  • Tetrahydrofuran (THF), reagent grade
  • Chloroform (CHCl 3), reagent grade
  • 5 M ammonia in methanol (half‐saturated at 0°C)
  • Diethyl ether, reagent grade
  • 50‐ and 250‐mL round‐bottom flasks
  • Vacuum desiccator
  • Vacuum oil pump
  • TLC plate: silica‐coated aluminum plate with fluorescent indicator (Merck silica gel 60 F 254)
  • 254‐nm UV lamp
  • Long disposable capillaries
  • 100‐mL funnels with sintered glass disc filters (porosity 3)
  • 100‐ and 250‐mL separatory funnel
  • Rotary evaporator equipped with a water aspirator
  • 3 × 20–cm and 3 × 15–cm sintered glass chromatography columns, porosity 3
  • Stainless steel spatula
  • Additional reagents and equipment for TLC ( appendix 3D) and column chromatography ( appendix 3E)

Alternate Protocol 1: Preparation of 2′‐O‐β‐D‐Ribofuranosyluridine

  • Thymine
  • Ammonium sulfate [(NH 4) 2SO 4]
  • 1,1,1,3,3,3‐Hexamethyldisilazane, reagent grade
  • Calcium chloride (CaCl 2), anhydrous
  • Trimethylsilyl trifluoromethanesulfonate (TMSOTf)
  • 0.2 N sodium methoxide (NaOMe), freshly prepared from sodium and dry methanol
  • Dowex 50 × 4 (100 to 200 mesh) in H+ form
  • Pyridine, anhydrous
  • Markiewicz reagent: 1,3‐dichloro‐1,1,3,3‐tetraisopropyldisiloxane, 96% pure (Wacker)
  • Toluene, reagent grade
  • 100‐, 250‐, and 500‐mL round‐bottom flasks
  • Reflux condensers
  • CaCl 2 protection tubes
  • Oil bath with temperature control
  • Adapters with stopcocks and vacuum pump (Fig. )
  • 250‐ and 500‐mL separatory funnels
  • Glass filters (porosity 3)
  • 3 × 20–cm chromatography columnsx
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Andreeva, O.I., Golubeva, A.S., Kochetkov, S.N., Van Aerschot, A., Herdewijn, P., Efimtseva, E.V., Ermolinsky, B.S., and Mikhailov, S.N. 2002. An additional 2′‐ribofuranose residue at a specific position of DNA primer prevents its elongation by HIV‐1 reverse trancriptase. Bioorg. Med. Chem. Lett. 12:681‐684.
   Efimtseva, E.V. and Mikhailov, S.N. 2002. Disaccharide nucleosides and oligonucleotides on their bases. New tools for the study of enzymes of nucleic acid metabolism. Biochemistry 67:1136‐1144.
   Efimtseva, E.V. and Mikhailov, S.N. 2004. Disaccharide nucleosides. Russ. Chem. Rev. 73:401‐414.
   Efimtseva, E.V., Bobkov, G.V., Mikhailov, S.N., Van Aerschot, A., Schepers, G., Busson, R., Rozenski, J., and Herdewijn, P. 2001. Oligonucleotides containing disaccharide nucleosides. Helv. Chim. Acta 84:2387‐2397.
   Gritsenko, O.M., Koudan, E.V., Mikhailov, S.N., Ermolinsky, B.S., Van Aerschot, A., Herdewijn, P., and Gromova, E.S. 2002. Affinity modification of EcoRII DNA methyltransferase by the dialdehyde‐substituted DNA duplexes: Mapping the enzyme region that interacts with DNA. Nucleosides Nucleotides Nucleic Acids 21:753‐764.
   Lerner, L.M. 1991. Synthesis and Properties of Various Disaccharide Nucleosides. In Chemistry of Nucleosides and Nucleotides, Vol. 2 (L.B. Townsend, ed.) pp. 27‐79. Plenum Press, New York.
   Luyten, I., Esnouf, R.M., Mikhailov, S.N., Efimtseva, E.V., Michiels, P., Heus, H.A., Hilbers, C.W., and Herdewijn, P. 2000. Solution structure of a RNA decamer duplex, containing 9‐[(2‐O‐(β‐D‐ribofuranosyl)‐(β‐D‐ribofuranosyl]adenine, a special residue in lower eukaryotic initiator tRNAs. Helv. Chim. Acta 83:1278‐1289.
   Markiewicz, W.T. and Wiewiorowski, M. 1986. 1‐[3,5‐(1,1,3,3‐Tetraisopropyldisiloxane‐1,3‐diyl)ribonucleosides. In Nucleic Acid Chemistry. Improved and New Synthetic Procedures and Techniques, Part 3: (L.B. Townsend and R.S. Tipson, eds.) pp. 229‐231. John Wiley & Sons, Hoboken.
   Markiewicz, W.T., Niewczyk, A., Gdaniec, Z., Adamiak, D.A., Dauter, Z., Rypniewski, W., and Chmielewski, M. 1998. Studies on synthesis and structure of O‐β‐D‐ribofuranosyl(1′′→2′)ribonucleosides and oligonucleotides. Nucleosides Nucleotides Nucleic Acids 17:411‐424.
   Mikhailov, S.N., De Clercq, E., and Herdewijn, P. 1996. Ribosylation of pyrimidine 2′‐deoxynucleosides. Nucleosides Nucleotides Nucleic Acids 15:1323‐1334.
   Mikhailov, S.N., Efimtseva, E.V., Gurskaya, G.V., Zavodnik, V.E., De Bruyn, A., Janssen, G., Rozenski, J., and Herdewijn, P. 1997a. An efficient synthesis and physico‐chemical properties of 2′‐O‐β‐D‐ribofuranosyl‐nucleosides, minor tRNA components. J. Carbohydr. Chem. 16:75‐92.
   Mikhailov, S.N., Rodionov, A.A., Efimtseva, E.V., Fomitcheva, M.V., Padyukova, N.Sh., Herdewijn, P., and Oivanen, M. 1997b. Preparation of pyrimidine 5′‐O‐β‐D‐ribofuranosyl‐nucleosides, and hydrolytic stability of O‐D‐ribofuranosyl‐nucleosides. Carbohydrate Lett. 2:321‐328.
   Mikhailov, S.N., Rodionov, A.A., Efimtseva, E.V., Ermolinsky, B.S., Fomitcheva, M.V., Padyukova, N.Sh., Rothenbacher, K., Lescrinier, E., and Herdewijn, P. 1998. Formation of trisaccharide nucleoside during disaccharide nucleoside synthesis. Eur. J. Org. Chem. 2193‐2199.
   Nauwelaerts, K., Efimtseva, E.V., Mikhailov, S.N., and Herdewijn, P. 2004. Disaccharide nucleosides, an important group of natural compounds In Frontiers in Nucleosides and Nucleic Acids (R.F. Schinazi and D.C. Liotta, eds.) pp 187‐220. IHL Press, Arlington, MA.
   Robins, M.J., Hansske, F., and Bermier, S.E. 1981. Nucleic acid related compounds. 36. Synthesis of the 2′‐O‐methyl and 3′‐O‐methyl ethers guanosine and 2‐amino adenosine and correlation of O′‐methylnucleoside C13 NMR spectral shifts. Can. J. Chem. 59:3360‐3364.
   Robins, M.J., Wilson, J.S., Sawyer, L., and James, M.N.G. 1983. Nucleic acid related compounds. 41. Restricted furanose conformations of 3′,5′‐(1,1,3,3‐tetraisopropyldisilox‐1,3‐diyl)nucleosides provide a convenient evaluation of anomeric configuration. Can. J. Chem. 59:1911‐1920.
   Tunitskaya, V.L., Rusakova, E.E., Memelova, L.V., Kochetkov, S.N., Van Aerschot, A., Herdewijn, P., Efimtseva, E.V., Ermolinsky, B.S., and Mikhailov, S.N. 1999. The mapping of T7 RNA polymerase active site with novel reagents—Oligonucleotides with reactive dialdehyde groups. FEBS Lett. 442:20‐24.
   Vorbrüggen, H. and Ruh‐Pohlenz, C. 2000. Synthesis of nucleosides. Org. React. 55:1‐630.
PDF or HTML at Wiley Online Library