Synthesis of the Tellurium‐Derivatized Phosphoramidites and Their Incorporation into DNA Oligonucleotides

Sibo Jiang1, Jia Sheng1, Zhen Huang1

1 Department of Chemistry, Georgia State University, Atlanta, Georgia
Publication Name:  Current Protocols in Nucleic Acid Chemistry
Unit Number:  Unit 1.25
DOI:  10.1002/0471142700.nc0125s47
Online Posting Date:  December, 2011
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

In this unit, an efficient method for the synthesis of 2′‐tellerium‐modified phosphoramidite and its incorporation into oligonucleotide are presented. We choose 5′‐O‐DMTr‐2,2′‐anhydro‐uridine and ‐thymidine nucleosides (S.1, S.2) as starting materials due to their easy preparation. The 5′‐O‐DMTr‐2,2′‐anhydro‐uridine and ‐thymidine can be converted to the corresponding 2′‐tellerium‐derivatized nucleosides by treating with the telluride nucleophiles. Subsequently, the 2′‐Te‐nucleosides can be transformed into 3′‐phosphoramidites, which are the building blocks for DNA/RNA synthesis. The DNA synthesis, purification, and applications of oligonucleotides containing 2′‐Te‐U or 2′‐Te‐T are described in the protocol. Curr. Protoc. Nucleic Acid Chem. 47:1.25.1‐1.25.16. © 2011 by John Wiley & Sons, Inc.

Keywords: tellurium nucleic acid; nucleic acid modification; Te‐derivatized DNA; nucleic acid X‐ray crystallography; DNA damaging; conductive DNA; DNA imaging

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Preparation of the 2′‐Phenyltellanyl Phosphoramidite
  • Basic Protocol 2: Preparation of the 2′‐Methyltellanyl Phosphoramidite
  • Basic Protocol 3: Synthesis, Purification, and Characterization of Oligonucleotides Containing 2′‐Tellurium Functionality
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Preparation of the 2′‐Phenyltellanyl Phosphoramidite

  Materials
  • Sodium borohydride (NaBH 4; Sigma)
  • Dry argon (Ar)
  • Anhydrous tetrahydrofuran (THF)
  • Diphenylditelluride (PhTeTePh; TCI America)
  • Anhydrous ethanol (EtOH)
  • 5′‐DMTr‐2, 2′‐anhydrouridine S.1 (SeNA Research)
  • 5′‐DMTr‐2, 2′‐anhydrothymidine S.2 (SeNA Research)
  • Anhydrous DCM (methylene chloride, CH 2Cl 2)
  • Methanol (MeOH)
  • Anhydrous MgSO 4
  • Silica gel 60 (230 to 400 mesh)
  • N,N‐diisopropylethylamine (Chemgene)
  • 2‐cyanoethyl N,N‐diisopropyl‐chlorophosphoramidite (Chemgene)
  • Saturated NaHCO 3 aqueous solution
  • Saturated NaCl aqueous solution
  • Anhydrous Na 2SO 4
  • Petroleum ether
  • Al 2O 3
  • Hexane
  • Ethyl acetate
  • 250‐, 100‐, 50‐, 25‐, 5‐mL round‐bottom flasks
  • 8 × 1.5–mm magnetic stir bar
  • Vacuum pump
  • 1‐, 3‐, 5‐, and 10‐mL disposable syringes
  • Ice bath
  • Magnetic stirring plate
  • 18‐G needles
  • Oil bath
  • 125‐mL separatory funnel
  • 100‐mL oven‐dried beakers
  • 125‐mL Erlenmeyer flasks
  • Additional reagents and equipment for thin‐layer chromatography (TLC; appendix 3D)
NOTE: All reactions are performed in Ar atmosphere. An Ar atmosphere can be carried out through a rubber septum that seals the flask and connects to balloon filled with Ar. A slightly positive pressure is maintained in the system to provide dry and oxygen‐free atmosphere. Liquid chemical is added using a syringe through a rubber septum.

Basic Protocol 2: Preparation of the 2′‐Methyltellanyl Phosphoramidite

  Materials
  • Dry argon (Ar)
  • Anhydrous tetrahydrofuran (THF)
  • Dimethyl ditelluride (CH 3TeTeCH 3; Organometallics)
  • 1 M LiAlH 4 solution in THF
  • 12‐crown‐4 (1,4,7,10‐tetraoxacyclododecane)
  • Anhydrous DCM (methylene chloride, CH 2Cl 2)
  • Methanol (MeOH)
  • Saturated NaCl aqueous solution
  • Anhydrous MgSO 4
  • Magnetic stir bars
  • 25‐mL round‐bottom flasks
  • Vacuum pump
  • 125‐mL separatory funnels
  • 100‐mL oven‐dried beakers
  • Rotary evaporator
  • Additional reagents and equipment for TLC ( appendix 3D)

Basic Protocol 3: Synthesis, Purification, and Characterization of Oligonucleotides Containing 2′‐Tellurium Functionality

  Materials
  • 2′‐Te‐modified U and T phosphoramidites ( protocol 1 or protocol 2)
  • Acetonitrile (CH 3CN), anhydrous (Glen Research)
  • DNA CPG (controlled‐pore glass) support
  • Argon
  • 0.05 M K 2CO 3 in methanol
  • 2 M triethylammonium acetate (TEAA) buffer, pH 7.0
  • Acetonitrile (CH 3CN), HPLC grade
  • 30% aqueous trichloroacetic acid (TCA)
  • 3‐hydroxypicolinic acid (3‐HPA)
  • Diammonium citrate
  • ABI3400 DNA/RNA synthesizer
  • DNA synthesis column
  • 2‐ mL microcentrifuge tubes
  • Vortex mixer
  • Microcentrifuge
  • SpeedVac
  • HPLC system (optional) with detector at 260 and/or 369 nm
  • HPLC column: 21.2 × 250–mm Zorbax RX‐C8 (Agilent Technology) or 21 × 250–mm XB‐C18 (Welch Materials)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Alexander, V., Choi, W.J., Chun, J., Kim, H.O., Jeon, J.H., Tosh, D.K., Lee, H.W., Chandra, G., Choi, J., and Jeong, L.S. 2010. A new DNA building block, 4′‐selenothymidine: Synthesis and modification to 4′‐Seleno‐AZT as a potential anti‐HIV agent. Org. Lett. 12:2242‐2245.
   Besse, D., Budisa, N., Karnbrock, W., Minks, C., Musiol, H.J., Pegoraro, S., Siedler, F., Weyher, E., and Moroder, L. 1997. Chalcogen‐analogs of amino acids. Their use in X‐ray crystallographic and folding studies of peptides and proteins. Biol. Chem. 378:211‐218.
   Boles, J.O., Lewinski, K., Kunkle, M., Odom, J.D., Dunlap, B., Lebioda, L., and Hatada, M. 1994. Bio‐incorporation of telluromethionine into buried residues of dihydrofolate reductase. Nat. Struct. Biol. 1:283‐284.
   Brandt, G., Carrasco, N., and Huang, Z. 2006. Efficient substrate cleavage catalyzed by hammerhead ribozymes derivatized with selenium for X‐ray crystallography. Biochemistry 45:8972‐8977.
   Budisa, N., Steipe, B., Demange, P., Eckerskorn, C., Kellermann, J., and Huber, R. 1995. High‐level biosynthetic substitution of methionine in proteins by its analogs 2‐aminohexanoic acid, selenomethionine, telluromethionine and ethionine in Escherichia coli. Eur. J. Biochem. 230:788‐796.
   Carrasco, N., Ginsburg, D., Du, Q., and Huang, Z. 2001. Synthesis of selenium‐derivatized nucleosides and oligonucleotides for X‐ray crystallography. Nucleosides Nucleotides Nucleic Acids. 20:1723‐1734.
   Carrasco, N., Buzin, Y., Tyson, E., Halpert, E., and Huang, Z. 2004. Selenium derivatization and crystallization of DNA and RNA oligonucleotides for X‐ray crystallography using multiple anomalous dispersion. Nucleic Acids Res. 32:1638‐1646.
   Carrasco, N., Caton‐Williams, J., Brandt, G., Wang, S.M., and Huang, Z. 2006. Efficient enzymatic synthesis of phosphoroselenoate RNA by using adenosine 5′‐(alpha‐P‐seleno)triphosphate. Angewandte Chemie (International Ed.). 45:94‐97.
   Caton‐Williams, J. and Huang, Z. 2008. Biochemistry of selenium‐derivatized naturally occurring and unnatural nucleic acids. Chem. Biodivers. 5:396‐407.
   Chen, J. and Stubbe, J. 2004. Synthesis and characterization of oligonucleotides containing a 4′‐keto abasic site. Biochemistry. 43:5278‐5286.
   Du, Q., Carrasco, N., Teplova, M., Wilds, C.J., Egli, M., and Huang, Z. 2002. Internal derivatization of oligonucleotides with selenium for X‐ray crystallography using MAD. J. Am. Chem. Soc. 124:24‐25.
   Farina, M., Soares, F.A., Zeni, G., Souza, D.O., and Rocha, J.B. 2004. Additive pro‐oxidative effects of methylmercury and ebselen in liver from suckling rat pups. Toxicol. Lett. 146:227‐235.
   Hassan, A.E.A., Sheng, J., Jiang, J.S., Zhang, W., and Huang, Z. 2009. Synthesis and crystallographic analysis of 5‐Se‐thymidine DNAs. Org. Lett. 11:2503‐2506.
   Hassan, A.E.A., Sheng, J., Zhang, W., and Huang, Z. 2010. High fidelity of base pairing by 2‐selenothymidine in DNA. J. Am. Chem. Soc. 132:2120‐2121.
   Hendrickson, W.A. 1991. Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254:51‐58.
   Hendrickson, W.A. 2000. Synchrotron crystallography. Trends Biochem. Sci. 25:637‐643.
   Hendrickson, W.A., Horton, J.R., and LeMaster, D.M. 1990. Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): A vehicle for direct determination of three‐dimensional structure. EMBO J. 9:1665‐1672.
   Hobartner, C. and Micura, R. 2004. Chemical synthesis of selenium‐modified Oligoribonucleotides and their enzymatic ligation leading to an U6SnRNA stem‐loop segment. J. Am. Chem. Soc. 126:1141‐1149.
   Jeong, L.S., Tosh, D.K., Kim, H.O., Wang, T., Hou, X., Yun, H.S., Kwon, Y., Lee, S.K., Choi, J., and Zhao, L.X. 2008. First synthesis of 4′‐selenonucleosides showing unusual Southern conformation. Org. Lett. 10:209‐212.
   Jiang, J.S., Sheng, J., Carrasco, N., and Huang, Z. 2007. Selenium derivatization of nucleic acids for crystallography. Nucleic Acids Res. 35:477‐485.
   Karnbrock, W., Weyher, E., Budisa, N., Huber, R., and Moroder, L. 1996. A new efficient synthesis of Acetyltelluro‐ and Acetylselenomethionine and their use in the biosynthesis of heavy‐atom protein analogs. J. Am. Chem. Soc. 118:913‐914.
   Maul, M.J., Barends, T.R., Glas, A.F., Cryle, M.J., Domratcheva, T., Schneider, S., Schlichting, I., and Carell, T. 2008. Crystal structure and mechanism of a DNA (6‐4) photolyase. Angewandte Chemie (International Ed.) 47:10076‐10080.
   Moroder, H., Kreutz, C., Lang, K., Serganov, A., and Micura, R. 2006. Synthesis, oxidation behavior, crystallization and structure of 2′‐methylseleno guanosine containing RNAs. J. Am. Chem. Soc. 128:9909‐9918.
   Ramadan, S.E., Razak, A.A., Ragab, A.M., and el‐Meleigy, M. 1989. Incorporation of tellurium into amino acids and proteins in a tellurium‐tolerant fungi. Biol. Trace Elem. Res. 20:225‐232.
   Salon, J., Sheng, J., Jiang, J.S., Chen, G.X., Caton‐Williams, J., and Huang, Z. 2007. Oxygen replacement with selenium at the thymidine 4‐position for the Se base pairing and crystal structure studies. J. Am. Chem. Soc. 129:4862‐4863.
   Sheng, J. and Huang, Z. 2008. Selenium derivatization of nucleic acids for phase and structure determination in nucleic acid x‐ray crystallography. Int. J. Mol. Sci. 9:258‐271.
   Sheng, J., Jiang, J.S., Salon, J., and Huang, Z. 2007. Synthesis of a 2′‐Se‐thymidine phosphoramidite and its incorporation into oligonucleotides for crystal structure study. Org. Lett. 9:749‐752.
   Sheng, J., Hassan, A.E.A., and Huang, Z. 2008. New telluride‐mediated elimination for novel synthesis of 2′‐3′‐didehydro‐2′,3′‐dideoxynucleosides. J. Org. Chem. 73:3725‐3729.
   Sheng, J., Hassan, A.E.A., and Huang, Z. 2009. Synthesis of the first tellurium‐derivatized oligonucleotides for structural and functional studies. Chemistry 15:10210‐10216.
   Sheng, J., Hassan, A.E., Zhang, W., Zhou, J., Xu, B., Soares, A.S., and Huang, Z. 2011. Synthesis, structure and imaging of oligodeoxyribonucleotides with tellurium‐nucleobase derivatization. Nucleic Acids Res. 39:3962‐3971.
   Usui, K., Aso, M., Fukuda, M., and Suemune, H. 2008. Photochemical generation of oligodeoxynucleotide containing a C4′‐oxidized abasic site and its efficient amine modification: dependence on structure and microenvironment. J. Org. Chem. 73:241‐248.
   Watts, J.K., Johnston, B.D., Jayakanthan, K., Wahba, A.S., Pinto, B.M., and Damha, M.J. 2008. Synthesis and biophysical characterization of oligonucleotides containing a 4′‐selenonucleotide. J. Am. Chem. Soc. 130:8578‐8579.
   Wilds, C.J., Pattanayek, R., Pan, C., Wawrzak, Z., and Egli, M. 2002. Selenium‐assisted nucleic acid crystallography: Use of phosphoroselenoates for MAD phasing of a DNA structure. J. Am. Chem. Soc. 124:14910‐14916.
   Zhang, W. and Huang, Z. 2011. Synthesis of the 5′‐se‐thymidine phosphoramidite and convenient labeling of DNA oligonucleotide. Org. Lett. 13:2000‐2003.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library