Two‐Step, One‐Pot Synthesis of Inosine, Guanosine, and 2′‐Deoxyguanosine O6‐Ethers via Intermediate O6‐(Benzotriazol‐1‐yl) Derivatives

Hari Prasad Kokatla1, Mahesh K. Lakshman1

1 The City College and The City University of New York, New York City, New York
Publication Name:  Current Protocols in Nucleic Acid Chemistry
Unit Number:  Unit 1.26
DOI:  10.1002/0471142700.nc0126s49
Online Posting Date:  June, 2012
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

A simple method for the etherification at the O6‐position of silyl‐protected inosine, guanosine, and 2′‐deoxyguanosine is described. Typically, a THF solution of the silylated nucleoside is treated with 1H‐benzotriazol‐1‐yloxy‐tris(dimethylamino)phosphonium hexafluorophosphate (BOP) and Cs2CO3 under a nitrogen atmosphere. Conversion to the O6‐(benzotriazol‐1‐yl) ethers occurs within about 10 min for inosine, and within about 60 min for guanosine and 2′‐deoxyguanosine. Then, for reaction with alcohols, the reaction mixture is evaporated and the O6‐(benzotriazol‐1‐yl) ether is treated with Cs2CO3 and an appropriate alcohol, at room temperature. On the other hand, for reaction with phenols, Cs2CO3 and the appropriate phenol are added to the reaction mixture without evaporation, and the reaction is carried out at 70°C. Subsequently, workup, isolation, and purification lead to the requisite O6‐alkyl or O6‐aryl ethers in good to excellent yields. Curr. Protoc. Nucleic Acid Chem. 49:1.26.1‐1.26.16. © 2012 by John Wiley & Sons, Inc.

Keywords: inosine; guanosine; 2′‐deoxyguanosine; BOP; reactive nucleosides; ethers; benzotriazolyl

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1:

  Materials
  • Inosine ( S.1), 99% (Acros)
  • Anhydrous pyridine, distilled from KOH (stored over KOH)
  • N,N‐Dimethylformamide (DMF), anhydrous (Aldrich)
  • Imidazole, 99% pure (Sigma)
  • tert‐Butyldimethylsilyl chloride (TBDMS‐Cl), 98% pure (Acros)
  • Hexanes, ACS grade (Fisher Scientific)
  • Dichloromethane (CH 2Cl 2), ACS grade (Fisher Scientific)
  • Sodium sulfate (Na 2SO 4), anhydrous, 99% pure (Spectrum)
  • 200‐ to 300‐mesh silica gel (Natland, http://www.natland.com/)
  • Ethyl acetate (EtOAc), HPLC grade (Fisher Scientific)
  • Guanosine ( S.5), 98% (Lancaster Synthesis)
  • 2′‐Deoxyguanosine ( S.9), 98% (Transgenomic, http://www/transgenomic.com)
  • 1H‐Benzotriazol‐1‐yloxy‐tris(dimethylamino)phosphonium hexafluorophosphate (BOP), ≥98% pure (Chem‐Impex, http://www.chemimpex.com)
  • Tetrahydrofuran (THF): distilled over lithium aluminum hydride (LiAlH 4) and then distilled over sodium just prior to use
  • Cesium carbonate (Cs 2CO 3), 99% pure (Aldrich)
  • Nitrogen gas and balloons
  • Alcohols and phenols for reaction with S.2, S.6, and S.10:
    • Methanol (for S.4a, S.8a, and S.12a)
    • Allyl alcohol (for S.4b)
    • Propargyl alcohol (for S.4c)
    • Isopropyl alcohol (for S.4d)
    • Ethylene glycol (for S.4e)
    • p‐Nitrophenol (for S.4f)
    • p‐Methoxyphenol (for S.8b)
    • Phenol (for S.12b)
  • 50‐ and 100‐mL round‐bottom flasks
  • Rotary evaporator equipped with a water aspirator
  • Magnetic stirrer and stir bars
  • Büchner funnel and appropriate filter flask
  • Water aspirator
  • Glass funnel, plugged with cotton
  • Oil pump for vacuum drying
  • TLC plates: 200‐µm aluminum foil‐backed silica gel plates with fluorescent indicator (for TLC analysis; Analtech)
  • Dual‐wavelength UV lamp (254 and 365 nm; for TLC analysis)
  • 70°C temperature‐controlled sand bath
  • 4‐mL clear glass vials with Teflon/rubber‐lined, closed‐top, screw caps (Wheaton) for conducting etherification reactions
  • 60‐ and 125‐mL separatory funnels
  • Fraction collector
  • Additional reagents and equipment for thin‐layer chromatography (TLC; appendix 3D) and silica gel column chromatography ( appendix 3E)
NOTE: Except where indicated above, all reagents were obtained from commercial sources and used without further purification.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Adamiak, R.W., Biała, E., and Skalski, B. 1985. New, ionic side‐products in oligonucleotide synthesis: Formation and reactivity of fluorescent N‐/purin‐6‐yl/pyridinium salts. Nucleic Acids Res. 13:2989‐3003.
   Allerson, C.R., Chen, S.L., and Verdine, G.L. 1997. A chemical method for site‐specific modification of RNA: The convertible nucleoside approach. J. Am. Chem. Soc. 119:7423‐7433.
   Aso, M., Norihisa, K., Tanaka, M., Koga, N., and Suemune, H. 2000. Synthesis of a new class of spin‐labeled purine ribonucleosides and development of a novel nucleophilic reaction to form 2,6,8‐trifunctionalized purine derivatives, J. Chem. Soc. Perkin Trans. 2:1637‐1638.
   Bae, S., Chaturvedi, S., and Lakshman, M.K. 2009. O6‐(Benzotriazol‐1‐y1)inosine derivatives for C6 modification of purine nucleosides. Curr. Protoc. Nucleic Acid Chemistry 36:1.22.1‐1.22.23.
   Bae, S. and Lakshman, M.K. 2007. O6‐(Benzotriazol‐1‐yl)inosine derivatives: Easily synthesized, reactive nucleosides. J. Am. Chem. Soc. 129:782‐789.
   Bae, S. and Lakshman, M.K. 2008a. Unusual deoxygenation and reactivity studies related to O6‐(benzotriazol‐1‐yl)inosine derivatives. J. Org. Chem. 73:1311‐1319.
   Bae, S. and Lakshman, M.K. 2008b. A novel polymer‐supported approach to nucleoside modification. J. Org. Chem. 73:3707‐3713.
   Bae, S. and Lakshman, M.K. 2008c. Synthetic utility of an isolable nucleoside phosphonium salt. Org. Lett. 10:2203‐2206.
   Cosstick, R. and Douglas, M.E. 1991. Synthesis of a dinucleoside monophosphate analogue containing 6‐N‐(2‐aminoethyl)‐2′‐deoxyadenosine: A novel approach to sequence specific cross‐linking in synthetic oligonucleotides. J. Chem. Soc. Perkin Trans. 1:1035‐1040.
   Fathi, R., Goswami, B., Kung, P.P., Gaffney, B.L., and Jones, R.A. 1990. Synthesis of 6‐substituted 2′‐deoxyguanosine derivatives using trifluoroacetic anhydride in pyridine. Tetrahedron Lett. 31:319‐322.
   Ferentz, A.E. and Verdine, G.L. 1992. Aminolysis of 2′‐deoxyinosine aryl ethers: Nucleoside model studies for the synthesis of functionally tethered oligonucleotides. Nucleosides Nucleotides 11:1749‐1763.
   Francom, P. and Robins, M.J. 2003. Nucleic acid related compounds. 118. Nonaqueous diazotization of aminopurine derivatives. Convenient access to 6‐halo and 2,6‐dihalopurine nucleosides and 2′‐deoxynucleosides with acyl or silyl halides. J. Org. Chem. 68:666‐669.
   Francom, P., Janeba, Z., Shibuya, S., and Robins, M.J. 2002. Nucleic acid related compounds. 116. Nonaqueous diazotization of aminopurine nucleosides. Mechanistic considerations and efficient procedures with tert‐butyl nitrite or sodium nitrite. J. Org. Chem. 67:6788‐6796.
   Gao, H., Fathi, R., Gaffney, B.L., Goswami, B., Kung, P.P., Rhee, Y., Jin, R., and Jones, R.A. 1992. 6‐O‐(Pentafluorophenyl)‐2′‐deoxyguanosine: A versatile synthon for nucleoside and oligonucleotide synthesis. J. Org. Chem. 57:6954‐6959.
   Harwood, E.A., Sigurdsson, S.T., Edfeldt, N.B.F., Reid, B.R., and Hopkins, P.B. 1999. Chemical synthesis and preliminary structural characterization of a nitrous acid interstrand cross‐linked duplex DNA. J. Am. Chem. Soc. 121:5081‐5082.
   Hayakawa, Y., Hirose, M., and Noyori, R. 1993. O‐Allyl protection of guanine and thymine residues in oligodeoxyribonucleotides. J. Org. Chem. 58:5551‐5555.
   Himmelsbach, F., Schulz, B.S., Trichtinger, R., Charubala, R., and Pfleiderer, W. 1984. The p‐nitrophenylethyl (NPE) group: A versatile new blocking group for phosphate and aglycone protection in nucleosides and nucleotides. Tetrahedron 40:59‐72.
   Janeba, Z., Lin, X., and Robins, M.J. 2004. Functionalization of guanosine and 2′‐deoxyguanosine at C6: A modified Appel process and SNAr displacement of imidazole. Nucleosides Nucleotides & Nucleic Acids 23:137‐147.
   Kaloudis, P., Paris, C., Vrantz, D., Encinas, C., Pérez‐Ruiz, R., Miranda, M.A., and Gimisis, T. 2009. Photolabile N‐hydroxypyrid‐2(1H)‐one derivatives of guanine nucleosides: A new method for independent guanine radical generation. Org. Biomol. Chem. 7:4965‐4972.
   Kokatla, H.P. and Lakshman, M.K. 2010. One‐pot etherification of purine nucleosides and pyrimidines. Org. Lett. 12:4478‐4481.
   Lagisetty, P., Russon, L.M., and Lakshman, M.K. 2006. A general synthesis of C6‐azolyl purine nucleosides. Angew. Chem. Int. Ed. 45:3660‐3663.
   Lakshman, M.K. and Zajc, B. 1996. A rapid, high‐yield method for 5′‐hydroxyl protection in very reactive and amino group modified nucleosides using dimethoxytrityl tetrafluoroborate. Nucleosides Nucleotides 15:1029‐1039.
   Lakshman, M.K. and Frank, J. 2009. A simple method for C‐6 modification of guanine nucleosides. Org. Biomol. Chem. 7:2933‐2940.
   Lakshman, M.K., Ngassa, F.N., Keeler, J.C., Dinh, Y.Q.V., Hilmer, J.H., and Russon, L.M. 2000. Facile synthesis of O6‐alkyl, O6‐aryl and diaminopurine nucleosides from 2′‐deoxyguanosine. Org. Lett. 2:927‐930.
   Lakshman, M.K., Gunda, P., and Pradhan, P. 2005. Mild and room temperature C–C bond forming reactions of nucleoside C‐6 arylsulfonates. J. Org. Chem. 70:10329‐10335.
   Lin, X. and Robins, M.J. 2000. Mild and efficient functionalization at C6 of purine 2′‐deoxynucleosides and ribonucleosides. Org. Lett. 2:3497‐3499.
   Liu, J., Janeba, Z., and Robins, M.J. 2004. SNAr iodination of 6‐chloropurine nucleosides: Aromatic Finkelstein reactions at temperatures below −40°C. Org. Lett. 6:2917‐2919.
   Meier, C. and Gräsl, S. 2002. Highly efficient synthesis of a phosphoramidite building block of C8‐deoxyguanosine adducts of aromatic amines. Synlett. 2002:802‐804.
   Miles, R.W., Samano, V., and Robins, M.J. 1995. Nucleic acid related compounds. 86. Nucleophilic functionalization of adenine, adenosine, tubercidin, and formycin derivatives via elaboration of the heterocyclic amino group into a readily displaced 1,2,4‐triazol‐4‐yl substituent. J. Am. Chem. Soc. 117:5951‐5957.
   Nagatsugi, F., Uemura, K., Nakashima, S., Maeda, M., and Sasaki, S. 1997. 2‐Aminopurine derivatives with C6‐substituted olefin as novel cross‐linking agents and the synthesis of the corresponding β‐phosphoramidite precursors. Tetrahedron 53:3035‐3044.
   Nair, V. and Richardson, S.G. 1980. Utility of purinyl radicals in the synthesis of base‐modified nucleosides and alkylpurines: 6‐amino group replacement by hydrogen, chlorine, bromine, and iodine. J. Org. Chem. 45:3969‐3974.
   Nair, V., Turner, G.A., Buenger, G.S., and Chamberlain, S.D. 1988. New methodologies for the synthesis of C‐2 functionalized hypoxanthine nucleosides. J. Org. Chem. 53:3051‐3057.
   Qian, M. and Glaser, R. 2005. Demonstration of an alternative mechanism for G‐to‐G cross‐link formation. J. Am. Chem. Soc. 127:880‐887.
   Robins, M.J. and Basom, G.L. 1973. Nucleic acid related compounds. 8. Direct conversion of 2′‐deoxyinosine to 6‐chloropurine 2′‐deoxyriboside and selected 6‐substituted deoxynucleosides and their evaluation as substrates for adenosine deaminase. Can. J. Chem. 51:3161‐3169.
   Robins, M.J. and Uznański, B. 1981a. Nucleic acid related compounds. 33. Conversions of adenosine and guanosine to 2,6‐dichloro, 2‐amino‐6‐chloro, and derived purine nucleosides. Can. J. Chem. 59:2601‐2607.
   Robins, M.J. and Uznański, B. 1981b. Nucleic acid related compounds. 34. Nonaqueous diazotization with tert‐butyl nitrite. Introduction of fluorine, chlorine, and bromine at the C‐2 of purine nucleosides. Can. J. Chem. 59:2608‐2611.
   Rostovtsev, V.V., Green, L.G., Fokin, V.V., and Sharpless, K.B. 2002. A stepwise Huisgen cycloaddition process: Copper(I)‐catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 41:2596‐2599.
   Samano, V., Miles, R.W., and Robins, M.J. 1994. Efficient conversion of 6‐aminopurines and nucleosides into 6‐substituted analogues via novel 6‐(1,2,4‐triazol‐4‐yl)purine derivatives. J. Am. Chem. Soc. 116:9331‐9332.
   Tornøe, C.W., Christensen, C., and Meldal, M. 2002. Peptidotriazoles on solid phase: [1,2,3]‐triazoles by regiospecific copper(I)‐catalyzed 1,3‐dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67:3057‐3064.
   van der Wenden, E.M., von Frijtag Drabbe Künzel, J.K., Mathôt, R.A.A., Danhof, M., IJzerman, A.P., and Soudijn, W. 1995. Ribose‐modified adenosine analogs as potential partial agonists for the adenosine receptor. J. Med. Chem. 38:4000‐4006.
   Véliz, E.A. and Beal, P.A. 2000. C6 substitution of inosine using hexamethylphosphorous triamide in conjunction with carbon tetrahalide or N‐halosuccinimide. Tetrahedron Lett. 41:1695‐1697.
   Véliz, E.A. and Beal, P.A. 2001. 6‐Bromopurine nucleosides as reagents for nucleoside analogue synthesis. J. Org. Chem. 66:8592‐8598.
   Wan, Z.‐K., Binnun, E., Wilson, D.P., and Lee, J. 2005. A highly facile and efficient one‐step synthesis of N6‐adenosine and N6‐2′‐deoxyadenosine derivatives. Org. Lett. 7:5877‐5880.
   Zajc, B., Lakshman, M.K., Sayer, J.M., and Jerina, D.M. 1992. Epoxide and diol epoxide adducts of polycyclic aromatic hydrocarbons at the exocyclic amino group of deoxyguanosine. Tetrahedron Lett. 33:3409‐3412.
   Zemlicka, J. and Endo, T. 1996. O6‐(4‐Nitrophenyl)inosine and ‐guanosine as chromogenic substrates for adenosine deaminase. Nucleosides Nucleotides 15:619‐629.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library